188 resultados para Zero Variation
Resumo:
There has been considerable research conducted over the last 20 years focused on predicting motor vehicle crashes on transportation facilities. The range of statistical models commonly applied includes binomial, Poisson, Poisson-gamma (or negative binomial), zero-inflated Poisson and negative binomial models (ZIP and ZINB), and multinomial probability models. Given the range of possible modeling approaches and the host of assumptions with each modeling approach, making an intelligent choice for modeling motor vehicle crash data is difficult. There is little discussion in the literature comparing different statistical modeling approaches, identifying which statistical models are most appropriate for modeling crash data, and providing a strong justification from basic crash principles. In the recent literature, it has been suggested that the motor vehicle crash process can successfully be modeled by assuming a dual-state data-generating process, which implies that entities (e.g., intersections, road segments, pedestrian crossings, etc.) exist in one of two states—perfectly safe and unsafe. As a result, the ZIP and ZINB are two models that have been applied to account for the preponderance of “excess” zeros frequently observed in crash count data. The objective of this study is to provide defensible guidance on how to appropriate model crash data. We first examine the motor vehicle crash process using theoretical principles and a basic understanding of the crash process. It is shown that the fundamental crash process follows a Bernoulli trial with unequal probability of independent events, also known as Poisson trials. We examine the evolution of statistical models as they apply to the motor vehicle crash process, and indicate how well they statistically approximate the crash process. We also present the theory behind dual-state process count models, and note why they have become popular for modeling crash data. A simulation experiment is then conducted to demonstrate how crash data give rise to “excess” zeros frequently observed in crash data. It is shown that the Poisson and other mixed probabilistic structures are approximations assumed for modeling the motor vehicle crash process. Furthermore, it is demonstrated that under certain (fairly common) circumstances excess zeros are observed—and that these circumstances arise from low exposure and/or inappropriate selection of time/space scales and not an underlying dual state process. In conclusion, carefully selecting the time/space scales for analysis, including an improved set of explanatory variables and/or unobserved heterogeneity effects in count regression models, or applying small-area statistical methods (observations with low exposure) represent the most defensible modeling approaches for datasets with a preponderance of zeros
Resumo:
The intent of this note is to succinctly articulate additional points that were not provided in the original paper (Lord et al., 2005) and to help clarify a collective reluctance to adopt zero-inflated (ZI) models for modeling highway safety data. A dialogue on this important issue, just one of many important safety modeling issues, is healthy discourse on the path towards improved safety modeling. This note first provides a summary of prior findings and conclusions of the original paper. It then presents two critical and relevant issues: the maximizing statistical fit fallacy and logic problems with the ZI model in highway safety modeling. Finally, we provide brief conclusions.
Resumo:
Zero energy buildings (ZEB) and zero energy homes (ZEH) are a current hot topic globally for policy makers (what are the benefits and costs), designers (how do we design them), the construction industry (can we build them), marketing (will consumers buy them) and researchers (do they work and what are the implications). This paper presents initial findings from actual measured data from a 9 star (as built), off-ground detached family home constructed in south-east Queensland in 2008. The integrated systems approach to the design of the house is analysed in each of its three main goals: maximising the thermal performance of the building envelope, minimising energy demand whilst maintaining energy service levels, and implementing a multi-pronged low carbon approach to energy supply. The performance outcomes of each of these stages are evaluated against definitions of Net Zero Carbon / Net Zero Emissions (Site and Source) and Net Zero Energy (onsite generation v primary energy imports). The paper will conclude with a summary of the multiple benefits of combining very high efficiency building envelopes with diverse energy management strategies: a robustness, resilience, affordability and autonomy not generally seen in housing.
Resumo:
Background Delivering effective multiple health behavior interventions to large numbers of adults with chronic conditions via primary care settings is a public health priority. Purpose Within a 12-month, telephone-delivered diet and physical activity intervention with multiple behavioral outcomes, we examined the extent and co-variation of multiple health behavior change. Methods A cluster-randomized trial with 434 patients with type 2 diabetes or hypertension were recruited from 10 general practices, which were randomized to receive telephone counseling or usual care. Results Those receiving telephone counseling were significantly more likely than those in usual care to make greater reductions in multiple behaviors after adjusting for baseline risk behaviors (OR 2.42; 95%CI 1.43, 4.11). Controlling for baseline risk and group allocation, making changes to either physical activity, fat, vegetable, or fiber intake was associated with making significantly more improvements in other behaviors. Conclusions For patients with chronic conditions, telephone counseling can significantly improve multiple health behaviors, with behavioral changes tending to co-vary.
Resumo:
Since its initial proposal in 1998, alkaline hydrothermal processing has rapidly become an established technology for the production of titanate nanostructures. This simple, highly reproducible process has gained a strong research following since its conception. However, complete understanding and elucidation of nanostructure phase and formation have not yet been achieved. Without fully understanding phase, formation, and other important competing effects of the synthesis parameters on the final structure, the maximum potential of these nanostructures cannot be obtained. Therefore this study examined the influence of synthesis parameters on the formation of titanate nanostructures produced by alkaline hydrothermal treatment. The parameters included alkaline concentration, hydrothermal temperature, the precursor material‘s crystallite size and also the phase of the titanium dioxide precursor (TiO2, or titania). The nanostructure‘s phase and morphology was analysed using X-ray diffraction (XRD), Raman spectroscopy and transmission electron microscopy. X-ray photoelectron spectroscopy (XPS), dynamic light scattering (non-invasive backscattering), nitrogen sorption, and Rietveld analysis were used to determine phase, for particle sizing, surface area determinations, and establishing phase concentrations, respectively. This project rigorously examined the effect of alkaline concentration and hydrothermal temperature on three commercially sourced and two self-prepared TiO2 powders. These precursors consisted of both pure- or mixed-phase anatase and rutile polymorphs, and were selected to cover a range of phase concentrations and crystallite sizes. Typically, these precursors were treated with 5–10 M sodium hydroxide (NaOH) solutions at temperatures between 100–220 °C. Both nanotube and nanoribbon morphologies could be produced depending on the combination of these hydrothermal conditions. Both titania and titanate phases are comprised of TiO6 units which are assembled in different combinations. The arrangement of these atoms affects the binding energy between the Ti–O bonds. Raman spectroscopy and XPS were therefore employed in a preliminary study of phase determination for these materials. The change in binding energy from a titania to a titanate binding energy was investigated in this study, and the transformation of titania precursor into nanotubes and titanate nanoribbons was directly observed by these methods. Evaluation of the Raman and XPS results indicated a strengthening in the binding energies of both the Ti (2p3/2) and O (1s) bands which correlated to an increase in strength and decrease in resolution of the characteristic nanotube doublet observed between 320 and 220 cm.1 in the Raman spectra of these products. The effect of phase and crystallite size on nanotube formation was examined over a series of temperatures (100.200 �‹C in 20 �‹C increments) at a set alkaline concentration (7.5 M NaOH). These parameters were investigated by employing both pure- and mixed- phase precursors of anatase and rutile. This study indicated that both the crystallite size and phase affect nanotube formation, with rutile requiring a greater driving force (essentially �\harsher. hydrothermal conditions) than anatase to form nanotubes, where larger crystallites forms of the precursor also appeared to impede nanotube formation slightly. These parameters were further examined in later studies. The influence of alkaline concentration and hydrothermal temperature were systematically examined for the transformation of Degussa P25 into nanotubes and nanoribbons, and exact conditions for nanostructure synthesis were determined. Correlation of these data sets resulted in the construction of a morphological phase diagram, which is an effective reference for nanostructure formation. This morphological phase diagram effectively provides a .recipe book�e for the formation of titanate nanostructures. Morphological phase diagrams were also constructed for larger, near phase-pure anatase and rutile precursors, to further investigate the influence of hydrothermal reaction parameters on the formation of titanate nanotubes and nanoribbons. The effects of alkaline concentration, hydrothermal temperature, crystallite phase and size are observed when the three morphological phase diagrams are compared. Through the analysis of these results it was determined that alkaline concentration and hydrothermal temperature affect nanotube and nanoribbon formation independently through a complex relationship, where nanotubes are primarily affected by temperature, whilst nanoribbons are strongly influenced by alkaline concentration. Crystallite size and phase also affected the nanostructure formation. Smaller precursor crystallites formed nanostructures at reduced hydrothermal temperature, and rutile displayed a slower rate of precursor consumption compared to anatase, with incomplete conversion observed for most hydrothermal conditions. The incomplete conversion of rutile into nanotubes was examined in detail in the final study. This study selectively examined the kinetics of precursor dissolution in order to understand why rutile incompletely converted. This was achieved by selecting a single hydrothermal condition (9 M NaOH, 160 °C) where nanotubes are known to form from both anatase and rutile, where the synthesis was quenched after 2, 4, 8, 16 and 32 hours. The influence of precursor phase on nanostructure formation was explicitly determined to be due to different dissolution kinetics; where anatase exhibited zero-order dissolution and rutile second-order. This difference in kinetic order cannot be simply explained by the variation in crystallite size, as the inherent surface areas of the two precursors were determined to have first-order relationships with time. Therefore, the crystallite size (and inherent surface area) does not affect the overall kinetic order of dissolution; rather, it determines the rate of reaction. Finally, nanostructure formation was found to be controlled by the availability of dissolved titanium (Ti4+) species in solution, which is mediated by the dissolution kinetics of the precursor.
Resumo:
We estimate the parameters of a stochastic process model for a macroparasite population within a host using approximate Bayesian computation (ABC). The immunity of the host is an unobserved model variable and only mature macroparasites at sacrifice of the host are counted. With very limited data, process rates are inferred reasonably precisely. Modeling involves a three variable Markov process for which the observed data likelihood is computationally intractable. ABC methods are particularly useful when the likelihood is analytically or computationally intractable. The ABC algorithm we present is based on sequential Monte Carlo, is adaptive in nature, and overcomes some drawbacks of previous approaches to ABC. The algorithm is validated on a test example involving simulated data from an autologistic model before being used to infer parameters of the Markov process model for experimental data. The fitted model explains the observed extra-binomial variation in terms of a zero-one immunity variable, which has a short-lived presence in the host.
Resumo:
The two-dimensional free surface flow of a finite-depth fluid into a horizontal slot is considered. For this study, the effects of viscosity and gravity are ignored. A generalised Schwarz-Christoffel mapping is used to formulate the problem in terms of a linear integral equation, which is solved exactly with the use of a Fourier transform. The resulting free surface profile is given explicitly in closed-form.
Resumo:
Ureaplasma species are the bacteria most frequently isolated from human amniotic fluid in asymptomatic pregnancies and placental infections. Ureaplasma parvum serovars 3 and 6 are the most prevalent serovars isolated from men and women. We hypothesized that the effects on the fetus and chorioamnion of chronic ureaplasma infection in amniotic fluid are dependent on the serovar, dose, and variation of the ureaplasma multiple banded antigen (MBA) and mba gene. We injected high- or low dose U. parvum serovar 3, serovar 6, or vehicle intra-amniotically into pregnant ewes at 55 days of gestation (term = 150 days) and examined the chorioamnion, amniotic fluid, and fetal lung tissue of animals delivered by cesarean section at 125 days of gestation. Variation of the multiple banded antigen/mba generated by serovar 3 and serovar 6 ureaplasmas in vivo were compared by PCR assay and Western blot. Ureaplasma inoculums demonstrated only one (serovar 3) or two (serovar 6) MBA variants in vitro, but numerous antigenic variants were generated in vivo: serovar 6 passage 1 amniotic fluid cultures contained more MBA size variants than serovar 3 (P = 0.005),and ureaplasma titers were inversely related to the number of variants (P = 0.025). The severity of chorioamnionitis varied between animals. Low numbers of mba size variants (five or fewer) within amniotic fluid were associated with severe inflammation, whereas the chorioamnion from animals with nine or more mba variants showed little or no inflammation. These differences in chorioamnion inflammation may explain why not all women with in utero Ureaplasma spp. experience adverse pregnancy outcomes.
Resumo:
Background Total hip arthroplasty carried out using cemented modular-neck implants provides the surgeon with greater intra-operative flexibility and allows more controlled stem positioning. Methods In this study, finite element models of a whole femur implanted with either the Exeter or with a new cemented modular-neck total hip arthroplasty (separate, neck and stem components) were developed. The changes in bone and cement mantle stress/strain were assessed for varying amounts of neck offset and version angle for the modular-neck device for two simulated physiological load cases: walking and stair climbing. Since the Exeter is the gold standard for polished cemented total hip arthroplasty stem design, bone and cement mantle stresses/strains in the modular-neck finite element models were compared with finite element results for the Exeter. Findings For the two physiological load cases, stresses and strains in the bone and cement mantle were similar for all modular-neck geometries. These results were comparable to the bone and cement mechanics surrounding the Exeter. These findings suggest that the Exeter and the modular neck device distribute stress to the surrounding bone and cement in a similar manner. Interpretation It is anticipated that the modular-neck device will have a similar short-term clinical performance to that of the Exeter, with the additional advantages of increased modularity.
Resumo:
This paper presents channel measurements and weather data collection experiments conducted in a rural environment for an innovative Multi-User-Single-Antenna (MUSA) MIMO-OFDM technology, proposed for rural areas. MUSA MIMO-OFDM uplink channels are established by placing six user terminals (UT) around one access point (AP). Generated terrain profiles and relative received power plots are presented based on the experimental data. According to the relative received signal, MUSA-MIMO-OFDM uplink channels experience temporal fading. Moreover, the correlation between the relative received power and weather variables are presented. Results show that all weather variables exhibit a negative average correlation with received power. Wind speed records the highest average negative correlation coefficient of -0.35. Local maxima of negative correlation, ranging from 0.49 to 0.78, between the weather variables and relative received signals were registered between 5-6 a.m. The highest measured correlation (-0.78) of this time of the day was exhibited by wind speed. These results show the extend of time variation effects experienced by MUSA-MIMO-OFDM channels deployed in rural environments.
Resumo:
BACKGROUND Endometriosis is a polygenic disease with a complex and multifactorial aetiology that affects 8-10% of women of reproductive age. Epidemiological data support a link between endometriosis and cancers of the reproductive tract. Fibroblast growth factor receptor 2 (FGFR2) has recently been implicated in both endometrial and breast cancer. Our previous studies on endometriosis identified significant linkage to a novel susceptibility locus on chromosome 10q26 and the FGFR2 gene maps within this linkage region. We therefore hypothesized that variation in FGFR2 may contribute to the risk of endometriosis. METHODS We genotyped 13 single nucleotide polymorphisms (SNPs) densely covering a 27 kb region within intron 2 of FGFR2 including two SNPs (rs2981582 and rs1219648) significantly associated with breast cancer and a total 40 tagSNPs across 150 kb of the FGFR2 gene. SNPs were genotyped in 958 endometriosis cases and 959 unrelated controls. RESULTS We found no evidence for association between endometriosis and FGFR2 intron 2 SNPs or SNP haplotypes and no evidence for association between endometriosis and variation across the FGFR2 gene. CONCLUSIONS Common variation in the breast-cancer implicated intron 2 and other highly plausible causative candidate regions of FGFR2 do not appear to be a major contributor to endometriosis susceptibility in our large Australian sample.