184 resultados para Yield Strength
Resumo:
Purpose: In the present study, we consider mechanical properties of phosphate glasses under high temperatureinduced and under friction-induced cross-linking, which enhance the modulus of elasticity. Design/methodology/approach: Two nanomechanical properties are evaluated, the first parameter is the modulus of elasticity (E) (or Young's modulus) and the second parameter is the hardness (H). Zinc meta-, pyro - and orthophosphates were recognized as amorphous-colloidal nanoparticles were synthesized under laboratory conditions and showed antiwear properties in engine oil. Findings: Young's modulus of the phosphate glasses formed under high temperature was in the 60-89 GPa range. For phosphate tribofilm formed under friction hardness and the Young's modulus were in the range of 2-10 GPa and 40-215 GPa, respectively. The degree of cross-linking during friction is provided by internal pressure of about 600 MPa and temperature close to 1000°C enhancing mechanical properties by factor of 3 (see Fig 1). Research limitations/implications: The addition of iron or aluminum ions to phosphate glasses under high temperature - and friction-induced amorphization of zinc metaphosphate and pyrophosphate tends to provide more cross-linking and mechanically stronger structures. Iron and aluminum (FeO4 or AlO4 units), incorporated into phosphate structure as network formers, contribute to the anion network bonding by converting the P=O bonds into bridging oxygen. Future work should consider on development of new of materials prepared by solgel processes, eg., zinc (II)-silicic acid. Originality/value: This paper analyses the friction pressure-induced and temperature–induced the two factors lead phosphate tribofilm glasses to chemically advanced glass structures, which may enhance the wear inhibition. Adding the coordinating ions alters the pressure at which cross-linking occurs and increases the antiwear properties of the surface material significantly.
Resumo:
Vitamin D deficiency and insufficiency are now seen as a contemporary health problem in Australia with possible widespread health effects not limited to bone health1. Despite this, the Vitamin D status (measured as serum 25-hydroxyvitamin D (25(OH)D)) of ambulatory adults has been overlooked in this country. Serum 25(OH)D status is especially important among this group as studies have shown a link between Vitamin D and fall risk in older adults2. Limited data also exists on the contributions of sun exposure via ultraviolet radiation and dietary intake to serum 25(OH)D status in this population. The aims of this project were to assess the serum 25(OH)D status of a group of older ambulatory adults in South East Queensland, to assess the association between their serum 25(OH)D status and functional measures as possible indicators of fall risk, obtain data on the sources of Vitamin D in this population and assess whether this intake was related to serum 25(OH)D status and describe sun protection and exposure behaviors in this group and investigate whether a relationship existed between these and serum 25(OH)D status. The collection of this data assists in addressing key gaps identified in the literature with regard to this population group and their Vitamin D status in Australia. A representative convenience sample of participants (N=47) over 55 years of age was recruited for this cross-sectional, exploratory study which was undertaken in December 2007 in south-east Queensland (Brisbane and Sunshine coast). Participants were required to complete a sun exposure questionnaire in addition to a Calcium and Vitamin D food frequency questionnaire. Timed up and go and handgrip dynamometry tests were used to examine functional capacity. Serum 25(OH)D status and blood measures of Calcium, Phosphorus and Albumin were determined through blood tests. The Mean and Median serum 25-Hydroxyvitamin D (25(OH)D) for all participants in this study was 85.8nmol/L (Standard Deviation 29.7nmol/L) and 81.0nmol/L (Range 22-158nmol/L), respectively. Analysis at the bivariate level revealed a statistically significant relationship between serum 25(OH)D status and location, with participants living on the Sunshine Coast having a mean serum 25(OH)D status 21.3nmol/L higher than participants living in Brisbane (p=0.014). While at the descriptive level there was an apparent trend towards higher outdoor exposure and increasing levels of serum 25(OH)D, no statistically significant associations between the sun measures of outdoor exposure, sun protection behaviors and phenotypic characteristics and serum 25(OH)D status were observed. Intake of both Calcium and Vitamin D was low in this sample with sixty-eight (68%) of participants not meeting the Estimated Average Requirements (EAR) for Calcium (Median=771.0mg; Range=218.0-2616.0mg), while eighty-seven (87%) did not meet the Adequate Intake for Vitamin D (Median=4.46ug; Range=0.13-30.0ug). This raises the question of how realistic meeting the new Adequate Intakes for Vitamin D is, when there is such a low level of Vitamin D fortification in this country. However, participants meeting the Adequate Intake (AI) for Vitamin D were observed to have a significantly higher serum 25(OH)D status compared to those not meeting the AI for Vitamin D (p=0.036), showing that meeting the AI for Vitamin D may play a significant role in determining Vitamin D status in this population. By stratifying our data by categories of outdoor exposure time, a trend was observed between increased importance of Vitamin D dietary intake as a possible determinant of serum 25(OH)D status in participants with lower outdoor exposures. While a trend towards higher Timed Up and Go scores in participants with higher 25(OH) D status was seen, this was only significant for females (p=0.014). Handgrip strength showed statistically significant association with serum 25(OH)D status. The high serum 25(OH)D status in our sample almost certainly explains the limited relationship between functional measures and serum 25(OH)D. However, the observation of an association between slower Time Up and Go speeds, and lower serum 25(OH)D levels, even with a small sample size, is significant as slower Timed Up and Go speeds have been associated with increased fall risk in older adults3. Multivariable regression analysis revealed Location as the only significant determinant of serum 25(OH)D status at p=0.014, with trends (p=>0.1) for higher serum 25(OH)D being shown for participants that met the AI for Vitamin D and rated themselves as having a higher health status. The results of this exploratory study show that 93.6% of participants had adequate 25(OH)D status-possibly due to measurement being taken in the summer season and the convenience nature of the sample. However, many participants do not meet their dietary Calcium and Vitamin D requirements, which may indicate inadequate intake of these nutrients in older Australians and a higher risk of osteoporosis. The relationship between serum 25(OH)D and functional measures in this population also requires further study, especially in older adults displaying Vitamin D insufficiency or deficiency.
Resumo:
Top screw pullout occurs when the screw is under too much axial force to remain secure in the vertebral body. In vitro biomechanical pullout tests are commonly done to find the maximum fixation strength of anterior vertebral body screws. Typically, pullout tests are done instantaneously where the screw is inserted and then pulled out immediately after insertion. However, bone is a viscoelastic material so it shows a time dependent stress and strain response. Because of this property, it was hypothesised that creep occurs in the vertebral trabecular bone due to the stress caused by the screw. The objective of this study was therefore to determine whether the axial pullout strength of anterior vertebral body screws used for scoliosis correction surgery changes with time after insertion. This study found that there is a possible relationship between pullout strength and time; however more testing is required as the sample numbers were quite small. The design of the screw is made with the knowledge of the strength it must obtain. This is important to prevent such occurrences as top screw pullout. If the pullout strength is indeed decreased due to creep, the design of the screw may need to be changed to withstand greater forces.
Resumo:
Computer aided joint replacement surgery has become very popular during recent years and is being done in increasing numbers all over the world. The accuracy of the system depends to a major extent, on accurate registration and immobility of the tracker attachment devices to the bone. This study was designed to asses the forces needed to displace the tracker attachment devices in the bone simulators. Bone simulators were used to maintain the uniformity of the bone structure during the study. The fixation devices tested were 3mm diameter self drilling, self tapping threaded pin, 4mm diameter self tapping cortical threaded pin, 5mm diameter self tapping cancellous threaded pin and a triplanar fixation device ‘ortholock’ used with three 3mm pins. All the devices were tested for pull out, translational and rotational forces in unicortical and bicortical fixation modes. Also tested was the normal bang strength and forces generated by leaning on the devices. The forces required to produce translation increased with the increasing diameter of the pins. These were 105N, 185N, and 225N for the unicortical fixations and 130N, 200N, 225N for the bicortical fixations for 3mm, 4mm and 5mm diameter pins respectively. The forces required to pull out the pins were 1475N, 1650N, 2050N for the unicortical, 1020N, 3044N and 3042N for the bicortical fixated 3mm, 4mm and 5mm diameter pins. The ortholock translational and pull out strength was tested to 900N and 920N respectively and still it did not fail. Rotatory forces required to displace the tracker on pins was to the magnitude of 30N before failure. The ortholock device had rotational forces applied up to 135N and still did not fail. The manual leaning forces and the sudden bang forces generated were of the magnitude of 210N and 150N respectively. The strength of the fixation pins increases with increasing diameter from three to five mm for the translational forces. There is no significant difference in pull out forces of four mm and five mm diameter pins though it is more that the three mm diameter pins. This is because of the failure of material at that stage rather than the fixation device. The rotatory forces required to displace the tracker are very small and much less that that can be produced by the surgeon or assistants in single pins. Although the ortholock device was tested to 135N in rotation without failing, one has to be very careful not to put any forces during the operation on the tracker devices to ensure the accuracy of the procedure.