47 resultados para YAWL
Resumo:
With the large diffusion of Business Process Managemen (BPM) automation suites, the possibility of managing process-related risks arises. This paper introduces an innovative framework for process-related risk management and describes a working implementation realized by extending the YAWL system. The framework covers three aspects of risk management: risk monitoring, risk prevention, and risk mitigation. Risk monitoring functionality is provided using a sensor-based architecture, where sensors are defined at design time and used at run-time for monitoring purposes. Risk prevention functionality is provided in the form of suggestions about what should be executed, by who, and how, through the use of decision trees. Finally, risk mitigation functionality is provided as a sequence of remedial actions (e.g. reallocating, skipping, rolling back of a work item) that should be executed to restore the process to a normal situation.
Resumo:
Process-aware information systems, ranging from generic workflow systems to dedicated enterprise information systems, use work-lists to offer so-called work items to users. In real scenarios, users can be confronted with a very large number of work items that stem from multiple cases of different processes. In this jungle of work items, users may find it hard to choose the right item to work on next. The system cannot autonomously decide which is the right work item, since the decision is also dependent on conditions that are somehow outside the system. For instance, what is “best” for an organisation should be mediated with what is “best” for its employees. Current work-list handlers show work items as a simple sorted list and therefore do not provide much decision support for choosing the right work item. Since the work-list handler is the dominant interface between the system and its users, it is worthwhile to provide an intuitive graphical interface that uses contextual information about work items and users to provide suggestions about prioritisation of work items. This paper uses the so-called map metaphor to visualise work items and resources (e.g., users) in a sophisticated manner. Moreover, based on distance notions, the work-list handler can suggest the next work item by considering different perspectives. For example, urgent work items of a type that suits the user may be highlighted. The underlying map and distance notions may be of a geographical nature (e.g., a map of a city or office building), but may also be based on process designs, organisational structures, social networks, due dates, calendars, etc. The framework proposed in this paper is generic and can be applied to any process-aware information system. Moreover, in order to show its practical feasibility, the paper discusses a full-fledged implementation developed in the context of the open-source workflow environment YAWL, together with two real examples stemming from two very different scenarios. The results of an initial usability evaluation of the implementation are also presented, which provide a first indication of the validity of the approach.
Resumo:
In his paper “Approaches to Modeling Business Processes. A Critical Analysis of BPMN, Workflow Patterns and YAWL”, Egon Börger criticizes the work of the Workflow Patterns Initiative in a rather provocative manner. Although the workflow patterns and YAWL are well established and frequently used, Börger seems to misunderstand the goals and contributions of the Workflow Patterns Initiative. Therefore, we put the workflow patterns and YAWL in their historic context. Moreover, we address some of the criticism of Börger by pointing out the real purpose of the workflow patterns and their relationship to formal languages (Petri nets) and real-life WFM/BPM systems.
Resumo:
This paper proposes a technique that supports process participants in making risk-informed decisions, with the aim to reduce the process risks. Risk reduction involves decreasing the likelihood and severity of a process fault from occurring. Given a process exposed to risks, e.g. a financial process exposed to a risk of reputation loss, we enact this process and whenever a process participant needs to provide input to the process, e.g. by selecting the next task to execute or by filling out a form, we prompt the participant with the expected risk that a given fault will occur given the particular input. These risks are predicted by traversing decision trees generated from the logs of past process executions and considering process data, involved resources, task durations and contextual information like task frequencies. The approach has been implemented in the YAWL system and its effectiveness evaluated. The results show that the process instances executed in the tests complete with substantially fewer faults and with lower fault severities, when taking into account the recommendations provided by our technique.
Resumo:
This paper proposes a concrete approach for the automatic mitigation of risks that are detected during process enactment. Given a process model exposed to risks, e.g. a financial process exposed to the risk of approval fraud, we enact this process and as soon as the likelihood of the associated risk(s) is no longer tolerable, we generate a set of possible mitigation actions to reduce the risks' likelihood, ideally annulling the risks altogether. A mitigation action is a sequence of controlled changes applied to the running process instance, taking into account a snapshot of the process resources and data, and the current status of the system in which the process is executed. These actions are proposed as recommendations to help process administrators mitigate process-related risks as soon as they arise. The approach has been implemented in the YAWL environment and its performance evaluated. The results show that it is possible to mitigate process-related risks within a few minutes.
Resumo:
Information security policies play an important role in achieving information security. Confidentiality, Integrity, and Availability are classic information security goals attained by enforcing appropriate security policies. Workflow Management Systems (WfMSs) also benefit from inclusion of these policies to maintain the security of business-critical data. However, in typical WfMSs these policies are designed to enforce the organisation’s security requirements but do not consider those of other stakeholders. Privacy is an important security requirement that concerns the subject of data held by an organisation. WfMSs often process sensitive data about individuals and institutions who demand that their data is properly protected, but WfMSs fail to recognise and enforce privacy policies. In this paper, we illustrate existing WfMS privacy weaknesses and introduce WfMS extensions required to enforce data privacy. We have implemented these extensions in the YAWL system and present a case scenario to demonstrate how it can enforce a subject’s privacy policy.
Resumo:
This article proposes an approach for real-time monitoring of risks in executable business process models. The approach considers risks in all phases of the business process management lifecycle, from process design, where risks are defined on top of process models, through to process diagnosis, where risks are detected during process execution. The approach has been realized via a distributed, sensor-based architecture. At design-time, sensors are defined to specify risk conditions which when fulfilled, are a likely indicator of negative process states (faults) to eventuate. Both historical and current process execution data can be used to compose such conditions. At run-time, each sensor independently notifies a sensor manager when a risk is detected. In turn, the sensor manager interacts with the monitoring component of a business process management system to prompt the results to process administrators who may take remedial actions. The proposed architecture has been implemented on top of the YAWL system, and evaluated through performance measurements and usability tests with students. The results show that risk conditions can be computed efficiently and that the approach is perceived as useful by the participants in the tests.
Resumo:
Video presented as part of Smart Services CRC Participants conferences. This video shows an example of the latest version of our middleware linking the YAWL workflow engine to Open Simulator. We have created a simple example of an accident victim being brought into a Hospital to be processed. The preliminary interface to the YAWL accident treatment workflow is shown as a worklist on the left of the image. The tasks are presented to the avatar via this interface, in a similar manner as done in web based workflow systems. Objects in the simulator are instrumented with a knowledge base, that enables the validation of actions within the world, to make sure that tasks are carried out correctly.
Resumo:
Video presented as part of Smart Services CRC Participants conferences. This video is a demonstration of a 3D visualisation of a running workflow in YAWL connected by a custom service to Second Life. The avatar, Clik, is being controlled by a workflow tool called YAWL, as it traverses the workflow schema, illustrating the process of film preproduction and shooting. This video was captured while the workflow tool was running - NO human is controlling the avatar during the video. It is all scripted from an external source on the Internet. See www.bpmve.org for more on this work.
Resumo:
The ability to steer business operations in alignment with the true origins of costs, and to be informed about this on a real-time basis, allows businesses to increase profitability. In most organisations however, high-level cost-based managerial decisions are still being made separately from process-related operational decisions. In this paper, we describe how process-related decisions at the operational level can be guided by cost considerations and how these cost-informed decision rules can be supported by a workflow management system. The paper presents the conceptual framework together with data requirements and technical challenges that need to be addressed to realise cost-informed workflow execution. The feasibility of our approach is demonstrated using a prototype implementation in the YAWL workflow environment.
Resumo:
The YAWL Worklet Service is an effective approach to facilitating dynamic flexibility and exception handling in workflow processes. Recent additions to the Service extend its capabilities through a programming interface that provides easier access to rules storage and evaluation, and an event server that notifies listening servers and applications when exceptions are detected, which together serve enhance the functionality and accessibility of the Service's features and expand its usability to new potential domains.
Resumo:
The Business Process Management domain has evolved at a dramatic pace over the past two decades and the notion of the business process has become a ubiquitous part of the modern business enterprise. Most organizations now view their operations in terms of business processes and manage these business processes in the same way as other corporate assets. In recent years, an increasingly broad range of generic technology has become available for automating business processes. This is part of a growing trend in the software engineering field throughout the past 40 years, where aspects of functionality that are potentially reusable on a widespread basis have coalesced into generic software components. Figure 2.1 illustrates this trend and shows how software systems have evolved from the monolithic applications of the 1960s developed in their entirety often by a single development team to today’s offerings that are based on the integration of a range of generic technologies with only a small component of the application actually being developed from scratch. In the 1990s, generic functionality for the automation of business processes first became commercially available in the form of workflow technology and subsequently evolved in the broader field of business process management systems (BPMS). This technology alleviated the necessity to develop process support within applications from scratch and provided a variety of off-the-shelf options on which these requirements could be based. The demand for this technology was significant and it is estimated that by 2000 there were well over 200 distinct workflow offerings in the market, each with a distinct conceptual foundation. Anticipating the difficulties that would be experienced by organizations seeking to utilize and integrate distinct workflow offerings, the Workflow Management Coalition (WfMC), an industry group formed to advance technology in this area, proposed a standard reference model for workflow technology with an express desire to seek a common platform for achieving workflow interoperation.
Resumo:
This research contributes a fully-operational approach for managing business process risk in near real-time. The approach consists of a language for defining risks on top of process models, a technique to detect such risks as they eventuate during the execution of business processes, a recommender system for making risk-informed decisions, and a technique to automatically mitigate the detected risks when they are no longer tolerable. Through the incorporation of risk management elements in all stages of the lifecycle of business processes, this work contributes to the effective integration of the fields of Business Process Management and Risk Management.