126 resultados para Wound regeneration
Resumo:
These three interventions, given over a three day period in 2010, concern the proposed multifunctional exhibition hall in Gwanju, Korea. The three interventions cover some theoretical and historical issues, but also consider the practical aspects of such a project.
Resumo:
This paper attempts to make out a clear case for the role of creative industries in the future of our towns and cities; but it also argues that some difficult choices have to be made. Many have argued that the creative industries bring together culture and economics, but this is not the reduction of one to the other. In any respect both of these are abstractions from a complex social reality; we have to know what exactly we mean by culture and economics and how much value we place upon them. But this is also about long term and short term, about balancing one set of interests with others which may not be able to articulate themselves as strongly. It is about looking below the hype to the real processes involved
Resumo:
Australian efforts to provide orthopaedic surgeons with living, load-bearing scaffolds suitable for current joint (knee and hip) replacement surgery, non-union fracture repair, and miniscal and growth plate cartilage regeneration are being lead by teams at the Institute for Medical and Veterinary Science and Women's and Children's Hospital in Adelaide; the Peter MacCallum and St Vincent's Medical Research Institutes in Melbourne; and the Mater Medical Research Institute and new Institute for Health and Biomedical Innovation at QUT, Brisbane. In each case multidisciplinary teams are attempting to develop autologous living tissue constructs, utilising mesenchymal stem cells (MSC), with the intention of effecting seamless repair and regeneration of skeletal trauma and defects. In this article we will briefly review current knowledge of the phenotypic properties of MSC and discuss the potential therapeutic applications of these cells as exemplified by their use in cartilage repair and tissue engineering based approaches to the treatment of skeletal defects.
Resumo:
This presentation relates to a paper presenting an explanation of why the reuse of building components after demolition or deconstruction is critical to the future of the construction industry. An examination of the historical cause and response to climate change sets the scene as to why governance is becoming increasingly focused on the built environment as a mechanism to controlling waste generation associated with the process of demolition, construction and operation. Through an annotated description to the evolving design and construction methodology of a range of timber dwellings (typically 'Queenslanders' during the eras of 1880-1900, 1900-1920 & 1920-1940) the paper offers an evaluation to the variety of materials, which can be used advantageously by those wishing to 'regenerate' a Queenslander. This analysis of 'regeneration' details the constraints when considering relocation and/ or reuse by adaption including deconstruction of building components against the legislative framework requirements of the Queensland Building Act 1975 and the Queensland Sustainable Planning Act 2009, with a specific examination to those of the Building Codes of Australia. The paper concludes with a discussion of these constraints, their impacts on 'regeneration' and the need for further research to seek greater understanding of the practicalities and drivers of relocation, adaptive and building components suitability for reuse after deconstruction.
Resumo:
We have previously reported that novel vitronectin:growth factor (VN:GF) complexes significantly increase re-epithelialization in a porcine deep dermal partial-thickness burn model. However, the potential exists to further enhance the healing response through combination with an appropriate delivery vehicle which facilitates sustained local release and reduced doses of VN:GF complexes. Hyaluronic acid (HA), an abundant constituent of the interstitium, is known to function as a reservoir for growth factors and other bioactive species. The physicochemical properties of HA confer it with an ability to sustain elevated pericellular concentrations of these species. This has been proposed to arise via HA prolonging interactions of the bioactive species with cell surface receptors and/or protecting them from degradation. In view of this, the potential of HA to facilitate the topical delivery of VN:GF complexes was evaluated. Two-dimensional (2D) monolayer cell cultures and 3D de-epidermised dermis (DED) human skin equivalent (HSE) models were used to test skin cell responses to HA and VN:GF complexes. Our 2D studies revealed that VN:GF complexes and HA stimulate the proliferation of human fibroblasts but not keratinocytes. Experiments in our 3D DED-HSE models showed that VN:GF complexes, both alone and in conjunction with HA, led to enhanced development of both the proliferative and differentiating layers in the DED-HSE models. However, there was no significant difference between the thicknesses of the epidermis treated with VN:GF complexes alone and VN:GF complexes together with HA. While the addition of HA did not enhance all the cellular responses to VN:GF complexes examined, it was not inhibitory, and may confer other advantages related to enhanced absorption and transport that could be beneficial in delivery of the VN:GF complexes to wounds.
Resumo:
NICE guidelines have stated that patients undergoing elective hip surgery are at increased risk for venous thromboembolic events (VTE) following surgery and have recommended thromboprophylaxis for 28-35 days1, 2. However the studies looking at the new direct thrombin inhibitors have only looked at major bleeding. We prospectively looked at wound discharge in patients who underwent hip arthroplasty and were given dabigatran postoperatively between March 2010 and April 2010 (n=56). We retrospectively compared these results to a matched group of patients who underwent similar operations six months earlier when all patients were given dalteparin routinely postoperatively until discharge, and discharged home on 150mg aspirin daily for 6 weeks (n=67). Wound discharge after 5 days was significantly higher in the patients taking dabigatran (32% dabigatran n=18, 10% dalteparin n=17, p=0.003) and our rate of delayed discharges due to wound discharge significantly increased from 7% in the dalteparin group (n=5) to 27% for dabigatran (n=15, p=0.004). Patients who received dabigatran were more than five times as likely to return to theatre with a wound complication as those who received dalteparin (7% dabigatran n=4, vs. 1% dalteparin n=1), however, this was not statistically significant (p=0.18). The significantly higher wound discharge and return to theatre rates demonstrated in this study have meant that we have changed our practice to administering dalteparin until the wound is dry and then starting dabigatran. Our study demonstrates the need for further clinical studies regarding wound discharge and dabigatran.
Resumo:
Fibroblasts and their activated phenotype, myofibroblasts, are the primary cell types involved in the contraction associated with dermal wound healing. Recent experimental evidence indicates that the transformation from fibroblasts to myofibroblasts involves two distinct processes: the cells are stimulated to change phenotype by the combined actions of transforming growth factor β (TGFβ) and mechanical tension. This observation indicates a need for a detailed exploration of the effect of the strong interactions between the mechanical changes and growth factors in dermal wound healing. We review the experimental findings in detail and develop a model of dermal wound healing that incorporates these phenomena. Our model includes the interactions between TGFβ and collagenase, providing a more biologically realistic form for the growth factor kinetics than those included in previous mechanochemical descriptions. A comparison is made between the model predictions and experimental data on human dermal wound healing and all the essential features are well matched.
Resumo:
Hypertrophic scars arise when there is an overproduction of collagen during wound healing. These are often associated with poor regulation of the rate of programmed cell death(apoptosis) of the cells synthesizing the collagen or by an exuberant inflammatory response that prolongs collagen production and increases wound contraction. Severe contractures that occur, for example, after a deep burn can cause loss of function especially if the wound is over a joint such as the elbow or knee. Recently, we have developed a morphoelastic mathematical model for dermal repair that incorporates the chemical, cellular and mechanical aspects of dermal wound healing. Using this model, we examine pathological scarring in dermal repair by first assuming a smaller than usual apoptotic rate for myofibroblasts, and then considering a prolonged inflammatory response, in an attempt to determine a possible optimal intervention strategy to promote normal repair, or terminate the fibrotic scarring response. Our model predicts that in both cases it is best to apply the intervention strategy early in the wound healing response. Further, the earlier an intervention is made, the less aggressive the intervention required. Finally, if intervention is conducted at a late time during healing, a significant intervention is required; however, there is a threshold concentration of the drug or therapy applied, above which minimal further improvement to wound repair is obtained.
Resumo:
Chronic venous leg ulcers are a detrimental health issue plaguing our society, resulting in long term pain, immobility and decreased quality of life for a large proportion of sufferers. The frequency of these chronic wounds has led current research to focus on the wound environment to provide important information regarding the prolonged, fluctuated or static healing patterns of these wounds. Disruption to the normal wound healing process results in release of multiple factors in the wound environment that could correlate to wound chronicity. These biochemical factors can often be detected through non-invasively sampling chronic wound fluid (CWF) from the site of injury. Of note, whilst there are numerous studies comparing acute and chronic wound fluids, there have not been any reports in the literature employing a longitudinal study in order to track biochemical changes in wound fluid as patients transition from a non-healing to healed state. Initially the objective of this study was to identify biochemical changes in CWF associated with wound healing using a proteomic approach. The proteomic approach incorporated a multi-dimensional liquid chromatography fractionation technique coupled with mass spectrometry (MS) to enable identification of proteins present in lower concentrations in CWF. Not surprisingly, many of the proteins identified in wound fluid were acute phase proteins normally expressed during the inflammatory phase of healing. However, the number of proteins positively identified by MS was quite low. This was attributed to the diverse range in concentration of protein species in CWF making it challenging to detect the diagnostically relevant low molecular weight proteins. In view of this, SELDI-TOF MS was also explored as a means to target low molecular weight proteins in sequential patient CWF samples during the course of healing. Unfortunately, the results generated did not yield any peaks of interest that were altered as wounds transitioned to a healed state. During the course of proteomic assessment of CWF, it became evident that a fraction of non-proteinaceous compounds strongly absorbed at 280 nm. Subsequent analyses confirmed that most of these compounds were in fact part of the purine catabolic pathway, possessing distinctive aromatic rings and which results in high absorbance at 254 nm. The accumulation of these purinogenic compounds in CWF suggests that the wound bed is poorly oxygenated resulting in a switch to anaerobic metabolism and consequently ATP breakdown. In addition, the presence of the terminal purine catabolite, uric acid (UA), indicates that the enzyme xanthine oxidoreductase (XOR) catalyses the reaction of hypoxanthine to xanthine and finally to UA. More importantly, the studies provide evidence for the first time of the exogenous presence of XOR in CWF. XOR is the only enzyme in humans capable of catalysing the production of UA in conjunction with a burst of the highly reactive superoxide radical and other oxidants like H2O2. Excessive release of these free radicals in the wound environment can cause cellular damage disrupting the normal wound healing process. In view of this, a sensitive and specific assay was established for monitoring low concentrations of these catabolites in CWF. This procedure involved combining high performance liquid chromatography (HPLC) with tandem mass spectrometry and multiple reaction monitoring (MRM). This application was selective, using specific MRM transitions and HPLC separations for each analyte, making it ideal for the detection and quantitation of purine catabolites in CWF. The results demonstrated that elevated levels of UA were detected in wound fluid obtained from patients with clinically worse ulcers. This suggests that XOR is active in the wound site generating significant amounts of reactive oxygen species (ROS). In addition, analysis of the amount of purine precursors in wound fluid revealed elevated levels of purine precursors in wound fluid from patients with less severe ulcers. Taken together, the results generated in this thesis suggest that monitoring changes of purine catabolites in CWF is likely to provide valuable information regarding the healing patterns of chronic venous leg ulcers. XOR catalysis of purine precursors not only provides a method for monitoring the onset, prognosis and progress of chronic venous leg ulcers, but also provides a potential therapeutic target by inhibiting XOR, thus blocking UA and ROS production. Targeting a combination of these purinogenic compounds and XOR could lead to the development of novel point of care diagnostic tests. Therefore, further investigation of these processes during wound healing will be worthwhile and may assist in elucidating the pathogenesis of this disease state, which in turn may lead to the development of new diagnostics and therapies that target these processes.
Resumo:
Nonhealing wounds are a major burden for health care systems worldwide. In addition, a patient who suffers from this type of wound usually has a reduced quality of life. While the wound healing process is undoubtedly complex, in this paper we develop a deterministic mathematical model, formulated as a system of partial differential equations, that focusses on an important aspect of successful healing: oxygen supply to the wound bed by a combination of diffusion from the surrounding unwounded tissue and delivery from newly formed blood vessels. While the model equations can be solved numerically, the emphasis here is on the use of asymptotic methods to establish conditions under which new blood vessel growth can be initiated and wound-bed angiogenesis can progress. These conditions are given in terms of key model parameters including the rate of oxygen supply and its rate of consumption in the wound. We use our model to discuss the clinical use of treatments such as hyperbaric oxygen therapy, wound bed debridement, and revascularisation therapy that have the potential to initiate healing in chronic, stalled wounds.
Resumo:
Skin plays a key role in protecting the body from the onslaught of pathogens and toxins we meet during our lifetime; thus, out of necessity, we have developed a rapid repair mechanism that quickly plugs any holes in this vital organ. Upon injury, a series of highly coordinated overlapping events, that include inflammatory, proliferation and maturation phases, result in the hasty closure of the wound and restoration of skin integrity. Over the past decade it has become clear that a number of immune cells that regulate the inflammatory phase, whilst important for removal of invading pathogens, are not necessary for repair and in fact may be responsible for the subsequent scar formation that seems to have resulted from having such a rapid repair process. The magnitude and length of inflammation in the wound not only appears to dictate the extent of scar formation but also in some cases may even prevent wound closure. In this review we will explore the two sides of inflammation in wound healing and review current and future drug therapies that target inflammation to modulate the healing outcome.