53 resultados para Walleye (Fish)
Resumo:
To say ‘Back o’ Bourke’ means ‘miles from anywhere’ to most Australians, however the Barwon and Darling Rivers that pass by the townships of Brewarrina and Bourke, respectively, are at the heart of the Murray‐Darling Basin. These are the traditional lands of the Ngiyampaa, Murawari and Yuwalaraay peoples (refer Aboriginal language groups in the Bringing back the fish section at the back of this booklet). They fished the river and surrounding waterways and hunted the wetlands. The Ngiyampaa, Murawari and Yuwalaraay people have seen their land and the rivers change...
Resumo:
The Ovens River rises in the Victorian Alps where it is linked to significant freshwater meadows and marshes. It flows past Harrietville, Bright, Myrtleford and Wangaratta where it is joined by the King River on its way to meet the Murray near the top of Lake Mulwala. These the traditional lands of the Bangerang people and their neighbours the Taungurung and Yorta Yorta peoples. They have fished the river and surrounding waterways and hunted the wetlands. The ebb and flow of water guided their travels and featured in their stories. The Bangerang, Taungurung and Yorta Yorta have seen their land and the river change...
Resumo:
After gathering water from 23 river valleys, the Murray empties into Lakes Alexandrina and Albert before making its way to the Coorong and out the Murray Mouth to Encounter Bay in South Australia. The entire Murray‐Darling Basin is upstream. Everything that happens there affects what goes on here...
Resumo:
Capture fisheries and aquaculture have been a major source of food and providers of economic benefits to many communities around the world for a very long time. While the history of aquaculture or fish farming can be traced back for more than 2000 years in some corners of the globe, notably in China, Japan and the Mediterranean, this is not true everywhere, where in general, fish farming is a relatively new industry. Rapid human population growth and increasing urbanisation over the last 20 to 40 years has meant that while fish consumption has doubled globally, returns from capture fisheries have remained static or have declined due to overexploitation and rising pollution levels, with some fisheries either closing or becoming economically unviable. Data from studies suggest that this trend is unlikely to be reversed unless appropriate fisheries management allows depleted wild stocks to rebuild. This has occurred during a time when demand for fish products has grown, in part due to improved purchasing power in some developing countries and changing dietary habits where fish are now considered to have a positive impact on health. Based on the projected population growth over the next two decades, Food and Agricultural Organization (FAO) estimates that at least an additional 40 million tonnes of aquatic food will be required to maintain the current per capita consumption (FAO 2006).
Resumo:
An important responsibility of the Environment Protection Authority, Victoria, is to set objectives for levels of environmental contaminants. To support the development of environmental objectives for water quality, a need has been identified to understand the dual impacts of concentration and duration of a contaminant on biota in freshwater streams. For suspended solids contamination, information reported by Newcombe and Jensen [ North American Journal of Fisheries Management , 16(4):693--727, 1996] study of freshwater fish and the daily suspended solids data from the United States Geological Survey stream monitoring network is utilised. The study group was requested to examine both the utility of the Newcombe and Jensen and the USA data, as well as the formulation of a procedure for use by the Environment Protection Authority Victoria that takes concentration and duration of harmful episodes into account when assessing water quality. The extent to which the impact of a toxic event on fish health could be modelled deterministically was also considered. It was found that concentration and exposure duration were the main compounding factors on the severity of effects of suspended solids on freshwater fish. A protocol for assessing the cumulative effect on fish health and a simple deterministic model, based on the biology of gill harm and recovery, was proposed. References D. W. T. Au, C. A. Pollino, R. S. S Wu, P. K. S. Shin, S. T. F. Lau, and J. Y. M. Tang. Chronic effects of suspended solids on gill structure, osmoregulation, growth, and triiodothyronine in juvenile green grouper epinephelus coioides . Marine Ecology Press Series , 266:255--264, 2004. J.C. Bezdek, S.K. Chuah, and D. Leep. Generalized k-nearest neighbor rules. Fuzzy Sets and Systems , 18:237--26, 1986. E. T. Champagne, K. L. Bett-Garber, A. M. McClung, and C. Bergman. {Sensory characteristics of diverse rice cultivars as influenced by genetic and environmental factors}. Cereal Chem. , {81}:{237--243}, {2004}. S. G. Cheung and P. K. S. Shin. Size effects of suspended particles on gill damage in green-lipped mussel perna viridis. Marine Pollution Bulletin , 51(8--12):801--810, 2005. D. H. Evans. The fish gill: site of action and model for toxic effects of environmental pollutants. Environmental Health Perspectives , 71:44--58, 1987. G. C. Grigg. The failure of oxygen transport in a fish at low levels of ambient oxygen. Comp. Biochem. Physiol. , 29:1253--1257, 1969. G. Holmes, A. Donkin, and I.H. Witten. {Weka: A machine learning workbench}. In Proceedings of the Second Australia and New Zealand Conference on Intelligent Information Systems , volume {24}, pages {357--361}, {Brisbane, Australia}, {1994}. {IEEE Computer Society}. D. D. Macdonald and C. P. Newcombe. Utility of the stress index for predicting suspended sediment effects: response to comments. North American Journal of Fisheries Management , 13:873--876, 1993. C. P. Newcombe. Suspended sediment in aquatic ecosystems: ill effects as a function of concentration and duration of exposure. Technical report, British Columbia Ministry of Environment, Lands and Parks, Habitat Protection branch, Victoria, 1994. C. P. Newcombe and J. O. T. Jensen. Channel suspended sediment and fisheries: A synthesis for quantitative assessment of risk and impact. North American Journal of Fisheries Management , 16(4):693--727, 1996. C. P. Newcombe and D. D. Macdonald. Effects of suspended sediments on aquatic ecosystems. North American Journal of Fisheries Management , 11(1):72--82, 1991. K. Schmidt-Nielsen. Scaling. Why is animal size so important? Cambridge University Press, NY, 1984. J. S. Schwartz, A. Simon, and L. Klimetz. Use of fish functional traits to associate in-stream suspended sediment transport metrics with biological impairment. Environmental Monitoring and Assessment , 179(1--4):347--369, 2011. E. Al Shaw and J. S. Richardson. Direct and indirect effects of sediment pulse duration on stream invertebrate assemb ages and rainbow trout ( Oncorhynchus mykiss ) growth and survival. Canadian Journal of Fish and Aquatic Science , 58:2213--2221, 2001. P. Tiwari and H. Hasegawa. {Demand for housing in Tokyo: A discrete choice analysis}. Regional Studies , {38}:{27--42}, {2004}. Y. Tramblay, A. Saint-Hilaire, T. B. M. J. Ouarda, F. Moatar, and B Hecht. Estimation of local extreme suspended sediment concentrations in california rivers. Science of the Total Environment , 408:4221--
Resumo:
As part of a wider study to develop an ecosystem-health monitoring program for wadeable streams of south-eastern Queensland, Australia, comparisons were made regarding the accuracy, precision and relative efficiency of single-pass backpack electrofishing and multiple-pass electrofishing plus supplementary seine netting to quantify fish assemblage attributes at two spatial scales (within discrete mesohabitat units and within stream reaches consisting of multiple mesohabitat units). The results demonstrate that multiple-pass electrofishing plus seine netting provide more accurate and precise estimates of fish species richness, assemblage composition and species relative abundances in comparison to single-pass electrofishing alone, and that intensive sampling of three mesohabitat units (equivalent to a riffle-run-pool sequence) is a more efficient sampling strategy to estimate reach-scale assemblage attributes than less intensive sampling over larger spatial scales. This intensive sampling protocol was sufficiently sensitive that relatively small differences in assemblage attributes (<20%) could be detected with a high statistical power (1-β > 0.95) and that relatively few stream reaches (<4) need be sampled to accurately estimate assemblage attributes close to the true population means. The merits and potential drawbacks of the intensive sampling strategy are discussed, and it is deemed to be suitable for a range of monitoring and bioassessment objectives.
Resumo:
This paper describes the relative influence of: (i) landscape scale environmental and hydrological factors; (ii) local scale environmental conditions including recent flow history, and; (iii) spatial effects (proximity of sites to one another) on the spatial and temporal variation in local freshwater fish assemblages in the Mary River, south-eastern Queensland, Australia. Using canonical correspondence analysis, each of the three sets of variables explained similar amounts of variation in fish assemblages (ranging from 44 to 52%). Variation in fish assemblages was partitioned into eight unique components: pure environmental, pure spatial, pure temporal, spatially structured environmental variation, temporally structured environmental variation, spatially structured temporal variation, the combined spatial/temporal component of environmental variation and unexplained variation. The total variation explained by these components was 65%. The combined spatial/temporal/environmental component explained the largest component (30%) of the total variation in fish assemblages, whereas pure environmental (6%), temporal (9%) and spatial (2%) effects were relatively unimportant. The high degree of intercorrelation between the three different groups of explanatory variables indicates that our understanding of the importance to fish assemblages of hydrological variation (often highlighted as the major structuring force in river systems) is dependent on the environmental context in which this role is examined.
Resumo:
Multivariate predictive models are widely used tools for assessment of aquatic ecosystem health and models have been successfully developed for the prediction and assessment of aquatic macroinvertebrates, diatoms, local stream habitat features and fish. We evaluated the ability of a modelling method based on the River InVertebrate Prediction and Classification System (RIVPACS) to accurately predict freshwater fish assemblage composition and assess aquatic ecosystem health in rivers and streams of south-eastern Queensland, Australia. The predictive model was developed, validated and tested in a region of comparatively high environmental variability due to the unpredictable nature of rainfall and river discharge. The model was concluded to provide sufficiently accurate and precise predictions of species composition and was sensitive enough to distinguish test sites impacted by several common types of human disturbance (particularly impacts associated with catchment land use and associated local riparian, in-stream habitat and water quality degradation). The total number of fish species available for prediction was low in comparison to similar applications of multivariate predictive models based on other indicator groups, yet the accuracy and precision of our model was comparable to outcomes from such studies. In addition, our model developed for sites sampled on one occasion and in one season only (winter), was able to accurately predict fish assemblage composition at sites sampled during other seasons and years, provided that they were not subject to unusually extreme environmental conditions (e.g. extended periods of low flow that restricted fish movement or resulted in habitat desiccation and local fish extinctions).
Resumo:
1. The ability of many introduced fish species to thrive in degraded aquatic habitats and their potential to impact on aquatic ecosystem structure and function suggest that introduced fish may represent both a symptom and a cause of decline in river health and the integrity of native aquatic communities. 2. The varying sensitivities of many commonly introduced fish species to degraded stream conditions, the mechanism and reason for their introduction and the differential susceptibility of local stream habitats to invasion because of the environmental and biological characteristics of the receiving water body, are all confounding factors that may obscure the interpretation of patterns of introduced fish species distribution and abundance and therefore their reliability as indicators of river health. 3. In the present study, we address the question of whether alien fish (i.e. those species introduced from other countries) are a reliable indicator of the health of streams and rivers in south-eastern Queensland, Australia. We examine the relationships of alien fish species distributions and indices of abundance and biomass with the natural environmental features, the biotic characteristics of the local native fish assemblages and indicators of anthropogenic disturbance at a large number of sites subject to varying sources and intensities of human impact. 4. Alien fish species were found to be widespread and often abundant in south-eastern Queensland rivers and streams, and the five species collected were considered to be relatively tolerant to river degradation, making them good candidate indicators of river health. Variation in alien species indices was unrelated to the size of the study sites, the sampling effort expended or natural environmental gradients. The biological resistance of the native fish fauna was not concluded to be an important factor mediating invasion success by alien species. Variation in alien fish indices was, however, strongly related to indicators of disturbance intensity describing local in-stream habitat and riparian degradation, water quality and surrounding land use, particularly the amount of urban development in the catchment. 5. Potential confounding factors that may influence the likelihood of introduction and successful establishment of an alien species and the implications of these factors for river bioassessment are discussed. We conclude that the potentially strong impact that many alien fish species can have on the biological integrity of natural aquatic ecosystems, together with their potential to be used as an initial basis to find out other forms of human disturbance impacts, suggest that some alien species (particularly species from the family Poeciliidae) can represent a reliable 'first cut' indicator of river health.
Resumo:
Interleukin-10 (IL-10) is an important immunoregulatory cytokine produced by various types of cells. Researchers describe here the isolation and characterization of olive flounder IL-10 (ofIL-10) cDNA and genomic organization. The ofIL-10 gene encodes a 187 amino acid protein and is composed of a five exon/four intron structure, similar to other known IL-10 genes. The ofIL-10 promoter sequence analysis shows a high level of homology in putative binding sites for transcription factors which are sufficient for transcriptional regulation ofIL-10. Important structural residues are maintained in the ofIL-10 protein including the four cysteines responsible for the two intra-chain disulfide bridges reported for human IL-10 and two extra cysteine residues that exist only in fish species. The phylogenetic analysis clustered ofIL-10 with other fish IL-10s and apart from mammalian IL-10 molecules. Quantitative real-time Polymerase Chain Reaction (PCR) analysis demonstrated ubiquitous ofIL-10 gene expression in the 13 tissues examined. Additionally, the induction of ofIL-10 gene expression was observed in the kidney tissue from olive flounder infected with bacteria (Edawardsiella tarda) or virus (Viral Hemorrhagic Septicemia Virus; VHSV). These data indicate that IL-10 is an important immune regulator that is conserved strictly genomic organization and function during the evolution of vertebrate immunity.
Resumo:
Adaptive phenotypic plasticity, the ability of an organism to change its phenotype to match local environments, is increasingly recognized for its contribution to evolution. However, few empirical studies have explored the molecular basis of plastic traits. The East African cichlid fish Astatoreochromis alluaudi displays adaptive phenotypic plasticity in its pharyngeal jaw apparatus, a structure that is widely seen as an evolutionary key innovation that has contributed to the remarkable diversity of cichlid fishes. It has previously been shown that in response to different diets, the pharyngeal jaws change their size, shape and dentition: hard diets induce an adaptive robust molariform tooth phenotype with short jaws and strong internal bone structures, while soft diets induce a gracile papilliform tooth phenotype with elongated jaws and slender internal bone structures. To gain insight into the molecular underpinnings of these adaptations and enable future investigations of the role that phenotypic plasticity plays during the formation of adaptive radiations, the transcriptomes of the two divergent jaw phenotypes were examined. Our study identified a total of 187 genes whose expression differs in response to hard and soft diets, including immediate early genes, extracellular matrix genes and inflammatory factors. Transcriptome results are interpreted in light of expression of candidate genesmarkers for tooth size and shape, bone cells and mechanically sensitive pathways. This study opens up new avenues of research at new levels of biological organization into the roles of phenotypic plasticity during speciation and radiation of cichlid fishes.
Resumo:
The possible differences between sexes in patterns of morphological variation in geographical space have been explored only in gonochorist freshwater species. We explored patterns of body shape variation in geographical space in a marine sequential hermaphrodite species, Coris julis (L. 1758), analyzing variation both within and between colour phases, through the use of geometric morphometrics and spatially-explicit statistical analyses. We also tested for the association of body shape with two environmental variables: temperature and chlorophyll a concentration, as obtained from time-series of satellite-derived data. Both colour phases showed a significant morphological variation in geographical space and patterns of variation divergent between phases. Although the morphological variation was qualitatively similar, individuals in the initial colour phase showed a more marked variation than individuals in the terminal phase. Body shape showed a weak but significant correlation with environmental variables, which was more pronounced in primary specimens.
Resumo:
Protogynous sequential hermaphroditism is very common in marine fish. Despite a large number of studies on various aspects of sequential hermaphroditism in fish, the relationship between body shape and colour during growth in dichromatic species has not been assessed. Using geometric morphometrics, the present study explores the relationship between growth, body shape and colouration in Coris julis (L. 1758), a small protogynous labrid species with distinct colour phases. Results show that body shape change during growth is independent of change in colour phase, a result which can be explained by the biology of the species and by the social control of sex change. Also, during growth the body grows deeper and the head has a steeper profile. It is hypothesized that a deeper body and a steeper profile might have a function in agonistic interactions between terminal phase males and that the marked chromatic difference between colour phases allows the lack of strict interdependence of body shape and colour during growth.
Resumo:
Gut bacterial communities are now known to influence a range of fitness related aspects of organisms. But how different the microbial community is in closely related species, and if these differences can be interpreted as adaptive is still unclear. In this study we compared microbial communities in two sets of closely related sympatric crater lake cichlid fish species pairs that show similar adaptations along the limnetic-benthic axis. The gut microbial community composition differs in the species pair inhabiting the older of two crater lakes. One major difference, relative to other fish, is that in these cichlids that live in hypersaline crater lakes, the microbial community is largely made up of Oceanospirillales (52.28%) which are halotolerant or halophilic bacteria. This analysis opens up further avenues to identify candidate symbiotic or co-evolved bacteria playing a role in adaptation to similar diets and life-styles or even have a role in speciation. Future functional and phylosymbiotic analyses might help to address these issues.
Resumo:
In fisheries managed using individual transferable quotas (ITQs) it is generally assumed that quota markets are well-functioning, allowing quota to flow on either a temporary or permanent basis to those able to make best use of it. However, despite an increasing number of fisheries being managed under ITQs, empirical assessments of the quota markets that have actually evolved in these fisheries remain scarce. The Queensland Coral Reef Fin-Fish Fishery (CRFFF) on the Great Barrier Reef has been managed under a system of ITQs since 2004. Data on individual quota holdings and trades for the period 2004-2012 were used to assess the CRFFF quota market and its evolution through time. Network analysis was applied to assess market structure and the nature of lease-trading relationships. An assessment of market participants’ abilities to balance their quota accounts, i.e., gap analysis, provided insights into market functionality and how this may have changed in the period observed. Trends in ownership and trade were determined, and market participants were identified as belonging to one out of a set of seven generalized types. The emergence of groups such as investors and lease-dependent fishers is clear. In 2011-2012, 41% of coral trout quota was owned by participants that did not fish it, and 64% of total coral trout landings were made by fishers that owned only 10% of the quota. Quota brokers emerged whose influence on the market varied with the bioeconomic conditions of the fishery. Throughout the study period some quota was found to remain inactive, implying potential market inefficiencies. Contribution to this inactivity appeared asymmetrical, with most residing in the hands of smaller quota holders. The importance of transaction costs in the operation of the quota market and the inequalities that may result are discussed in light of these findings