613 resultados para WEIGHT-LIFTING EXERCISE
Resumo:
Objective: To assess the effect of graded increases in exercised-induced energy expenditure (EE) on appetite, energy intake (EI), total daily EE and body weight in men living in their normal environment and consuming their usual diets. Design: Within-subject, repeated measures design. Six men (mean (s.d.) age 31.0 (5.0) y; weight 75.1 (15.96) kg; height 1.79 (0.10) m; body mass index (BMI) 23.3(2.4) kg/m2), were each studied three times during a 9 day protocol, corresponding to prescriptions of no exercise, (control) (Nex; 0 MJ/day), medium exercise level (Mex; ~1.6 MJ/day) and high exercise level (Hex; ~3.2 MJ/day). On days 1-2 subjects were given a medium fat (MF) maintenance diet (1.6 ´ resting metabolic rate (RMR)). Measurements: On days 3-9 subjects self-recorded dietary intake using a food diary and self-weighed intake. EE was assessed by continual heart rate monitoring, using the modified FLEX method. Subjects' HR (heart rate) was individually calibrated against submaximal VO2 during incremental exercise tests at the beginning and end of each 9 day study period. Respiratory exchange was measured by indirect calorimetry. Subjects completed hourly hunger ratings during waking hours to record subjective sensations of hunger and appetite. Body weight was measured daily. Results: EE amounted to 11.7, 12.9 and 16.8 MJ/day (F(2,10)=48.26; P<0.001 (s.e.d=0.55)) on the Nex, Mex and Hex treatments, respectively. The corresponding values for EI were 11.6, 11.8 and 11.8 MJ/day (F(2,10)=0.10; P=0.910 (s.e.d.=0.10)), respectively. There were no treatment effects on hunger, appetite or body weight, but there was evidence of weight loss on the Hex treatment. Conclusion: Increasing EE did not lead to compensation of EI over 7 days. However, total daily EE tended to decrease over time on the two exercise treatments. Lean men appear able to tolerate a considerable negative energy balance, induced by exercise, over 7 days without invoking compensatory increases in EI.
Resumo:
Given the present worldwide epidemic of obesity, it is pertinent to ask how effective exercise could be in helping people to lose weight or to prevent weight gain. There is a widely held belief that exercise is futile for weight reduction because any energy expended in exercise is automatically compensated for by a corresponding increase in energy intake (EI). In other words, exercise elevates the intensity of hunger and drives food consumption. This “commonsense” view appears to originate in an energy-balance model of appetite control, which stipulates that energy expended will drive EI as a consequence of the regulation of energy balance. However, it is very clear that EI (food consumption or eating) is not just a biological matter. Eating does not occur solely to rectify some internal need state. Indeed, an examination of the relation between exercise and appetite control has shown a very weak coupling; most studies have demonstrated that food intake does not immediately rise after exercise, even after very high energy expenditure (EE).[1] The processes of exercise-induced EE and food consumption do not appear to be tightly linked. After exercise, there is only slow and partial compensation for the energy expended. Therefore, exercise can be very useful in helping to bring about weight loss and is even more important in preventing weight gain or weight regain. This editorial explores this issue.
Resumo:
Objective: Walking is commonly recommended to help with weight management. We measured total energy expenditure (TEE) and its components to quantify the impact of increasing exercise-induced energy expenditure (ExEE) on other components of TEE. Methods: Thirteen obese women underwent an 8-week walking group intervention. TEE was quantified using doubly labeled water, ExEE was quantified using heart rate monitors, daily movement was assessed by accelerometry and resting metabolic rate was measured using indirect calorimetry. Results: Four of the 13 participants achieved the target of 1500 kcal wk−1 of ExEE and all achieved 1000 kcal wk−1. The average ExEE achieved by the group across the 8 weeks was 1434 ± 237 kcal wk−1. Vigorous physical activity, as assessed by accelerometry, increased during the intervention by an average of 30 min per day. Non-exercise activity thermogenesis (NEAT) decreased, on average, by 175 kcal d−1 (−22%) from baseline to the intervention and baseline fitness was correlated with change in NEAT. Conclusions: Potential alterations in non-exercise activity should be considered when exercise is prescribed. The provision of appropriate education on how to self-monitor daily activity levels may improve intervention outcomes in groups who are new to exercise. Practice implications: Strategies to sustain incidental and light physical activity should be offered to help empower individuals as they develop and maintain healthy and long-lasting lifestyle habits.
Resumo:
Objective: To examine exercise-induced changes in the reward value of food during medium-term supervised exercise in obese individuals. ---------- Subjects/Methods: The study was a 12-week supervised exercise intervention prescribed to expend 500 kcal/day, 5 d/week. 34 sedentary obese males and females were identified as responders (R) or non-responders (NR) to the intervention according to changes in body composition relative to measured energy expended during exercise. Food reward (ratings of liking and wanting, and relative preference by forced choice pairs) for an array of food images was assessed before and after an acute exercise bout. ---------- Results. 20 responders and 14 non-responders were identified. R lost 5.2 kg±2.4 of total fat mass and NR lost 1.7 kg±1.4. After acute exercise, liking for all foods increased in NR compared to no change in R. Furthermore, NR showed an increase in wanting and relative preference for high-fat sweet foods. These differences were independent of 12-weeks regular exercise and weight loss. ---------- Conclusion. Individuals who showed an immediate post-exercise increase in liking and increased wanting and preference for high-fat sweet foods displayed a smaller reduction in fat mass with exercise. For some individuals, exercise increases the reward value of food and diminishes the impact of exercise on fat loss.
Resumo:
The way in which metabolic fuels are utilised can alter the expression of behaviour in the interests of regulating energy balance and fuel availability. This is consistent with the notion that the regulation of appetite is a psychobiological process, in which physiological mediators act as drivers of behaviour. The glycogenostatic theory suggests that glycogen availability is central in eliciting negative feedback signals to restore energy homeostasis. Due to its limited storage capacity, carbohydrate availability is tightly regulated and its restoration is a high metabolic priority following depletion. It has been proposed that such depletion may act as a biological cue to stimulate compensatory energy intake in an effort to restore availability. Due to the increased energy demand, aerobic exercise may act as a biological cue to trigger compensatory eating as a result of perturbations to muscle and liver glycogen stores. However, studies manipulating glycogen availability over short-term periods (1-3 days) using exercise, diet or both have often produced equivocal findings. There is limited but growing evidence to suggest that carbohydrate balance is involved in the short-term regulation of food intake, with a negative carbohydrate balance having been shown to predict greater ad libitum feeding. Furthermore, a negative carbohydrate balance has been shown to be predictive of weight gain. However, further research is needed to support these findings as the current research in this area is limited. In addition, the specific neural or hormonal signal through which carbohydrate availability could regulate energy intake is at present unknown. Identification of this signal or pathway is imperative if a casual relationship is to be established. Without this, the possibility remains that the associations found between carbohydrate balance and food intake are incidental.
Resumo:
Background Little or no research has been done in the overweight child on the relative contribution of multisensory information to maintain postural stability. Therefore, the purpose of this study was to investigate postural balance control under normal and experimentally altered sensory conditions in normal-weight versus overweight children. Methods Sixty children were stratified into a younger (7–9 yr) and an older age group (10–12 yr). Participants were also classified as normal-weight (n = 22) or overweight (n = 38), according to the international BMI cut-off points for children. Postural stability was assessed during quiet bilateral stance in four sensory conditions (eyes open or closed, normal or reduced plantar sensation), using a Kistler force plate to quantify COP dynamics. Coefficients of variation were calculated as well to describe intra-individual variability. Findings Removal of vision resulted in systematically higher amounts of postural sway, but no significant BMI group differences were demonstrated across sensory conditions. However, under normal conditions lower plantar cutaneous sensation was associated with higher COP velocities and maximal excursion of the COP in the medial-lateral direction for the overweight group. Regardless of condition, higher variability was shown in the overweight children within the 7–9 yr old subgroup for postural sway velocity, and more specifically medial–lateral velocity. Interpretation In spite of these subtle differences, results did not establish any clear underlying sensory organization impairments that may affect standing balance performance in overweight children compared to normal-weight peers. Consequently, it is believed that other factors account for overweight children's functional balance deficiencies.
Resumo:
Previous research has suggested that perceptual-motor difficulties may account for obese children's lower motor competence; however, specific evidence is currently lacking. Therefore, this study examined the effect of altered visual conditions on spatiotemporal and kinematic gait parameters in obese versus normal-weight children. Thirty-two obese and normal-weight children (11.2 ± 1.5 years) walked barefoot on an instrumented walkway at constant self-selected speed during LIGHT and DARK conditions. Three-dimensional motion analysis was performed to calculate spatiotemporal parameters, as well as sagittal trunk segment and lower extremity joint angles at heel-strike and toe-off. Self-selected speed did not significantly differ between groups. In the DARK condition, all participants walked at a significantly slower speed, decreased stride length, and increased stride width. Without normal vision, obese children had a more pronounced increase in relative double support time compared to the normal-weight group, resulting in a significantly greater percentage of the gait cycle spent in stance. Walking in the DARK, both groups showed greater forward tilt of the trunk and restricted hip movement. All participants had increased knee flexion at heel-strike, as well as decreased knee extension and ankle plantarflexion at toe-off in the DARK condition. The removal of normal vision affected obese children's temporal gait pattern to a larger extent than that of normal-weight peers. Results suggest an increased dependency on vision in obese children to control locomotion. Next to the mechanical problem of moving excess mass, a different coupling between perception and action appears to be governing obese children's motor coordination and control.
Resumo:
Background By 2025, it is estimated that approximately 1.8 million Australian adults (approximately 8.4% of the adult population) will have diabetes, with the majority having type 2 diabetes. Weight management via improved physical activity and diet is the cornerstone of type 2 diabetes management. However, the majority of weight loss trials in diabetes have evaluated short-term, intensive clinic-based interventions that, while producing short-term outcomes, have failed to address issues of maintenance and broad population reach. Telephone-delivered interventions have the potential to address these gaps. Methods/Design Using a two-arm randomised controlled design, this study will evaluate an 18-month, telephone-delivered, behavioural weight loss intervention focussing on physical activity, diet and behavioural therapy, versus usual care, with follow-up at 24 months. Three-hundred adult participants, aged 20-75 years, with type 2 diabetes, will be recruited from 10 general practices via electronic medical records search. The Social-Cognitive Theory driven intervention involves a six-month intensive phase (4 weekly calls and 11 fortnightly calls) and a 12-month maintenance phase (one call per month). Primary outcomes, assessed at 6, 18 and 24 months, are: weight loss, physical activity, and glycaemic control (HbA1c), with weight loss and physical activity also measured at 12 months. Incremental cost-effectiveness will also be examined. Study recruitment began in February 2009, with final data collection expected by February 2013. Discussion This is the first study to evaluate the telephone as the primary method of delivering a behavioural weight loss intervention in type 2 diabetes. The evaluation of maintenance outcomes (6 months following the end of intervention), the use of accelerometers to objectively measure physical activity, and the inclusion of a cost-effectiveness analysis will advance the science of broad reach approaches to weight control and health behaviour change, and will build the evidence base needed to advocate for the translation of this work into population health practice.
Resumo:
The gastrointestinal tract plays an important role in the improved appetite control and weight loss in response to bariatric surgery. Other strategies which similarly alter gastrointestinal responses to food intake could contribute to successful weight management. The aim of this review is to discuss the effects of surgical, pharmacological and behavioural weight loss interventions on gastrointestinal targets of appetite control, including gastric emptying. Gastrointestinal peptides are also discussed because of their integrative relationship in appetite control. This review shows that different strategies exert diverse effects and there is no consensus on the optimal strategy for manipulating gastric emptying to improve appetite control. Emerging evidence from surgical procedures (e.g., sleeve gastrectomy and Roux en-Y gastric bypass) suggests a faster emptying rate and earlier delivery of nutrients to the distal small intestine may improve appetite control. Energy restriction slows gastric emptying, while the effect of exercise-induced weight loss on gastric emptying remains to be established. The limited evidence suggests that chronic exercise is associated with faster gastric emptying which we hypothesise will impact on appetite control and energy balance. Understanding how behavioural weight loss interventions (e.g., diet and exercise) alter gastrointestinal targets of appetite control may be important to improve their success in weight management.
Resumo:
Overweight and obesity are risk factors for post-menopausal breast cancer, and many women diagnosed with breast cancer, irrespective of menopausal status, gain weight after diagnosis. Weight management plays an important role in rehabilitation and recovery since obesity and/or weight gain may lead to poorer breast cancer prognosis, as well as prevalent co-morbid conditions (e.g. cardiovascular disease and diabetes), poorer surgical outcomes (e.g., increased operating and recovery times, higher infection rates, and poorer healing), lymphedema, fatigue, functional decline, and poorer health and overall quality of life. Health care professionals should encourage weight management at all phases of the cancer care continuum as a means to potentially avoid adverse sequelae and late effects, as well as to improve overall health and possibly survival. Comprehensive approaches that involve dietary and behavior modification, and increased aerobic and strength training exercise have shown promise in either preventing weight gain or promoting weight loss, reducing biomarkers associated with inflammation and co-morbidity, and improving lifestyle behaviors, functional status, and quality of life in this high-risk patient population.
Resumo:
Previous studies have shown that exercise (Ex) interventions create a stronger coupling between energy intake (EI) and energy expenditure (EE) leading to increased homeostasis of the energy-balance (EB) regulatory system compared to a diet intervention where an un-coupling between EI and EE occurs. The benefits of weight loss from Ex and diet interventions greatly depend on compensatory responses. The present study investigated an 8-week medium-term Ex and diet intervention program (Ex intervention comprised of 500kcal EE five days per week over four weeks at 65-75% maximal heart rate, whereas the diet intervention comprised of a 500kcal decrease in EI five days per week over four weeks) and its effects on compensatory responses and appetite regulation among healthy individuals using a between- and within-subjects design. Effects of an acute dietary manipulation on appetite and compensatory behaviours and whether a diet and/or Ex intervention pre-disposes individuals to disturbances in EB homeostasis were tested. Energy intake at an ad libitum lunch test meal after a breakfast high- and low-energy pre-load (the high energy pre-load contained 556kcal and the low energy pre-load contained 239kcal) were measured at the Baseline (Weeks -4 to 0) and Intervention (Weeks 0 to 4) phases in 13 healthy volunteers (three males and ten females; mean age 35 years [sd + 9] and mean BMI 25 kg/m2 [sd + 3.8]) [participants in each group included Ex=7, diet=5 (one female in the diet group dropped out midway), thus, 12 participants completed the study]. At Weeks -4, 0 and 4, visual analogue scales (VAS) were used to assess hunger and satiety and liking and wanting (L&W) for nutrient and taste preferences using a computer-based system (E-Prime v1.1.4). Ad libitum test meal EI was consistently lower after the HE pre-load compared to the LE pre-load. However, this was not consistent during the diet intervention however. A pre-load x group interaction on ad libitum test meal EI revealed that during the intervention phase the Ex group showed an improved sensitivity to detect the energy content between the two pre-loads and improved compensation for the ad libitum test meal whereas the diet group’s ability to differentiate between the two pre-loads decreased and showed poorer compensation (F[1,10]=2.88, p-value not significant). This study supports previous findings of the effect Ex and diet interventions have on appetite and compensatory responses; Ex increases and diet decreases energy balance sensitivity.
Resumo:
Introduction: Feeding on demand supports an infant’s innate capacity to respond to hunger and satiety cues and may promote later self-regulation of intake. Our aim was to examine whether feeding style (on demand vs to schedule) is associated with weight gain in early life. Methods: Participants were first-time mothers of healthy term infants enrolled NOURISH, an RCT evaluating an intervention to promote positive early feeding practices. Baseline assessment occurred when infants were aged 2-7 months. Infants able to be categorised clearly as feeding on demand or to schedule (mothers self report) were included in the logistic regression analysis. The model was adjusted for gender, breastfeeding and maternal age, education, BMI. Weight gain was defined as a positive difference in baseline minus birthweight z-scores (WHO standards) which indicated tracking above weight percentile. Results: Data from 356 infants with a mean age of 4.4 (SD 1.0) months were available. Of these, 197 (55%) were fed on demand, 42 (12%) were fed on schedule. There was no statistical association between feeding style and weight gain [OR=0.72 (95%CI 0.35-1.46), P=0.36]. Formula fed infants were three times more likely to be fed on schedule and formula feeding was independently associated with increased weight gain [OR=2.02 (95%CI 1.11-3.66), P=0.021]. Conclusion: In this preliminary analysis the association between feeding style and weight gain did not reach statistical significance, however , the effect size may be clinically relevant and future analysis will include the full study sample (N=698).
Resumo:
Introduction: Emerging evidence reveals that early feeding practices are associated with child food intake, eating behaviour and weight status. This cross-sectional analysis examined the association between maternal infant feeding practices/beliefs and child weight in Australian infants aged 11-17 months. Methods: Participants were 293 first-time mothers of healthy term infants (144 boys, mean age 14±1 months) enrolled in the NOURISH RCT. Mothers self-reported infant feeding practices and beliefs using the Infant Feeding Questionnaire (Baughcum, 2001). Anthropometric data were also measured at baseline (infants aged 4 months). Multiple regression analysis was used, adjusting for infant age, gender, birth weight, infant feeding mode (breast vs. formula), maternal perceptions of infant weight status, pre-pregnancy weight, weight concern, age and education. Results: The average child weight-for-age z-score (WAZ) was 0.62±0.83 (range:-1.56 to 2.94) and the mean change in WAZ (WAZ change) from 4 to 14 months was 0.62±0.69 (range:-1.50 to 2.76). Feeding practices/beliefs partly explained child WAZ (R2=0.28) and WAZ change (R2=0.13) in the adjusted models. While child weight status at 14 months was inversely associated with responsive feeding (e.g. baby feeds whenever she wants, feeding to stop baby being unsettled) (β=-0.104, p=0.06) and maternal concern about the child becoming underweight (β=-0.224, p<0.001), it was positively associated with mother’s concern about child overweight (β=0.197, p<0.05). Birth weight, infant’s age, maternal weight concern and perceiving her child as overweight were significant covariates. WAZ change was only significantly associated with responsive feeding (β=-0.147, p<0.05). Conclusion: Responsive feeding may be an important strategy to promote healthy child weight.
Resumo:
It is frequently reported that the actual weight loss achieved through exercise interventions is less than theoretically expected. Amongst other compensatory adjustments that accompany exercise training (e.g., increases in resting metabolic rate and energy intake), a possible cause of the less than expected weight loss is a failure to produce a marked increase in total daily energy expenditure due to a compensatory reduction in non-exercise activity thermogenesis (NEAT). Therefore, there is a need to understand how behaviour is modified in response to exercise interventions. The proposed benefits of exercise training are numerous, including changes to fat oxidation. Given that a diminished capacity to oxidise fat could be a factor in the aetiology of obesity, an exercise training intensity that optimises fat oxidation in overweight/obese individuals would improve impaired fat oxidation, and potentially reduce health risks that are associated with obesity. To improve our understanding of the effectiveness of exercise for weight management, it is important to ensure exercise intensity is appropriately prescribed, and to identify and monitor potential compensatory behavioural changes consequent to exercise training. In line with the gaps in the literature, three studies were performed. The aim of Study 1 was to determine the effect of acute bouts of moderate- and high-intensity walking exercise on NEAT in overweight and obese men. Sixteen participants performed a single bout of either moderate-intensity walking exercise (MIE) or high-intensity walking exercise (HIE) on two separate occasions. The MIE consisted of walking for 60-min on a motorised treadmill at 6 km.h-1. The 60-min HIE session consisted of walking in 5-min intervals at 6 km.h-1 and 10% grade followed by 5-min at 0% grade. NEAT was assessed by accelerometer three days before, on the day of, and three days after the exercise sessions. There was no significant difference in NEAT vector magnitude (counts.min-1) between the pre-exercise period (days 1-3) and the exercise day (day 4) for either protocol. In addition, there was no change in NEAT during the three days following the MIE session, however NEAT increased by 16% on day 7 (post-exercise) compared with the exercise day (P = 0.32). During the post-exercise period following the HIE session, NEAT was increased by 25% on day 7 compared with the exercise day (P = 0.08), and by 30-33% compared with the pre-exercise period (day 1, day 2 and day 3); P = 0.03, 0.03, 0.02, respectively. To conclude, a single bout of either MIE or HIE did not alter NEAT on the exercise day or on the first two days following the exercise session. However, extending the monitoring of NEAT allowed the detection of a 48 hour delay in increased NEAT after performing HIE. A longer-term intervention is needed to determine the effect of accumulated exercise sessions over a week on NEAT. In Study 2, there were two primary aims. The first aim was to test the reliability of a discontinuous incremental exercise protocol (DISCON-FATmax) to identify the workload at which fat oxidation is maximised (FATmax). Ten overweight and obese sedentary male men (mean BMI of 29.5 ¡Ó 4.5 kg/m2 and mean age of 28.0 ¡Ó 5.3 y) participated in this study and performed two identical DISCON-FATmax tests one week apart. Each test consisted of alternate 4-min exercise and 2-min rest intervals on a cycle ergometer. The starting work load of 28 W was increased every 4-min using 14 W increments followed by 2-min rest intervals. When the respiratory exchange ratio was consistently >1.0, the workload was increased by 14 W every 2-min until volitional exhaustion. Fat oxidation was measured by indirect calorimetry. The mean FATmax, ƒtV O2peak, %ƒtV O2peak and %Wmax at which FATmax occurred during the two tests were 0.23 ¡Ó 0.09 and 0.18 ¡Ó 0.08 (g.min-1); 29.7 ¡Ó 7.8 and 28.3 ¡Ó 7.5 (ml.kg-1.min-1); 42.3 ¡Ó 7.2 and 42.6 ¡Ó 10.2 (%ƒtV O2max) and 36.4 ¡Ó 8.5 and 35.4 ¡Ó 10.9 (%), respectively. A paired-samples T-test revealed a significant difference in FATmax (g.min-1) between the tests (t = 2.65, P = 0.03). The mean difference in FATmax was 0.05 (g.min-1) with the 95% confidence interval ranging from 0.01 to 0.18. Paired-samples T-test, however, revealed no significant difference in the workloads (i.e. W) between the tests, t (9) = 0.70, P = 0.4. The intra-class correlation coefficient for FATmax (g.min-1) between the tests was 0.84 (95% confidence interval: 0.36-0.96, P < 0.01). However, Bland-Altman analysis revealed a large disagreement in FATmax (g.min-1) related to W between the two tests; 11 ¡Ó 14 (W) (4.1 ¡Ó 5.3 ƒtV O2peak (%)).These data demonstrate two important phenomena associated with exercise-induced substrate oxidation; firstly, that maximal fat oxidation derived from a discontinuous FATmax protocol differed statistically between repeated tests, and secondly, there was large variability in the workload corresponding with FATmax. The second aim of Study 2 was to test the validity of a DISCON-FATmax protocol by comparing maximal fat oxidation (g.min-1) determined by DISCON-FATmax with fat oxidation (g.min-1) during a continuous exercise protocol using a constant load (CONEX). Ten overweight and obese sedentary males (BMI = 29.5 ¡Ó 4.5 kg/m2; age = 28.0 ¡Ó 4.5 y) with a ƒtV O2max of 29.1 ¡Ó 7.5 ml.kg-1.min-1 performed a DISCON-FATmax test consisting of alternate 4-min exercise and 2-min rest intervals on a cycle ergometer. The 1-h CONEX protocol used the workload from the DISCON-FATmax to determine FATmax. The mean FATmax, ƒtV O2max, %ƒtV O2max and workload at which FATmax occurred during the DISCON-FATmax were 0.23 ¡Ó 0.09 (g.min-1); 29.1 ¡Ó 7.5 (ml.kg-1.min-1); 43.8 ¡Ó 7.3 (%ƒtV O2max) and 58.8 ¡Ó 19.6 (W), respectively. The mean fat oxidation during the 1-h CONEX protocol was 0.19 ¡Ó 0.07 (g.min-1). A paired-samples T-test revealed no significant difference in fat oxidation (g.min-1) between DISCON-FATmax and CONEX, t (9) = 1.85, P = 0.097 (two-tailed). There was also no significant correlation in fat oxidation between the DISCON-FATmax and CONEX (R=0.51, P = 0.14). Bland- Altman analysis revealed a large disagreement in fat oxidation between the DISCONFATmax and CONEX; the upper limit of agreement was 0.13 (g.min-1) and the lower limit of agreement was ¡V0.03 (g.min-1). These data suggest that the CONEX and DISCONFATmax protocols did not elicit different rates of fat oxidation (g.min-1). However, the individual variability in fat oxidation was large, particularly in the DISCON-FATmax test. Further research is needed to ascertain the validity of graded exercise tests for predicting fat oxidation during constant load exercise sessions. The aim of Study 3 was to compare the impact of two different intensities of four weeks of exercise training on fat oxidation, NEAT, and appetite in overweight and obese men. Using a cross-over design 11 participants (BMI = 29 ¡Ó 4 kg/m2; age = 27 ¡Ó 4 y) participated in a training study and were randomly assigned initially to: [1] a lowintensity (45%ƒtV O2max) exercise (LIT) or [2] a high-intensity interval (alternate 30 s at 90%ƒtV O2max followed by 30 s rest) exercise (HIIT) 40-min duration, three times a week. Participants completed four weeks of supervised training and between cross-over had a two week washout period. At baseline and the end of each exercise intervention,ƒtV O2max, fat oxidation, and NEAT were measured. Fat oxidation was determined during a standard 30-min continuous exercise bout at 45%ƒtV O2max. During the steady state exercise expired gases were measured intermittently for 5-min periods and HR was monitored continuously. In each training period, NEAT was measured for seven consecutive days using an accelerometer (RT3) the week before, at week 3 and the week after training. Subjective appetite sensations and food preferences were measured immediately before and after the first exercise session every week for four weeks during both LIT and HIIT. The mean fat oxidation rate during the standard continuous exercise bout at baseline for both LIT and HIIT was 0.14 ¡Ó 0.08 (g.min-1). After four weeks of exercise training, the mean fat oxidation was 0.178 ¡Ó 0.04 and 0.183 ¡Ó 0.04 g.min-1 for LIT and HIIT, respectively. The mean NEAT (counts.min-1) was 45 ¡Ó 18 at baseline, 55 ¡Ó 22 and 44 ¡Ó 16 during training, and 51 ¡Ó 14 and 50 ¡Ó 21 after training for LIT and HIIT, respectively. There was no significant difference in fat oxidation between LIT and HIIT. Moreover, although not statistically significant, there was some evidence to suggest that LIT and HIIT tend to increase fat oxidation during exercise at 45% ƒtV O2max (P = 0.14 and 0.08, respectively). The order of training treatment did not significantly influence changes in fat oxidation, NEAT, and appetite. NEAT (counts.min-1) was not significantly different in the week following training for either LIT or HIIT. Although not statistically significant (P = 0.08), NEAT was 20% lower during week 3 of exercise training in HIIT compared with LIT. Examination of appetite sensations revealed differences in the intensity of hunger, with higher ratings after LIT compared with HIIT. No differences were found in preferences for high-fat sweet foods between LIT and HIIT. In conclusion, the results of this thesis suggest that while fat oxidation during steady state exercise was not affected by the level of exercise intensity, there is strong evidence to suggest that intense exercise could have a debilitative effect on NEAT.