132 resultados para Vitamin B9
Resumo:
The risk of vitamin D insufficiency is increased in persons having limited sunlight exposure and dietary vitamin D. Supplementation compliance might be improved with larger doses taken less often, but this may increase the potential for side effects. The objective of the present study was to determine whether a weekly or weekly/monthly regimen of vitamin D supplementation is as effective as daily supplementation without increasing the risk of side effects. Participants were forty-eight healthy adults who were randomly assigned for 3 months to placebo or one of three supplementation regimens: 50 μg/d (2000 IU/d, analysed dose 70 μg/d), 250 μg/week (10 000 IU/week, analysed dose 331 μg/week) or 1250 μg/week (50 000 IU/week, analysed dose 1544 μg/week) for 4 weeks and then 1250 μg/month for 2 months. Daily and weekly doses were equally effective at increasing serum 25-hydroxyvitamin D, which was significantly greater than baseline in all the supplemented groups after 30 d of treatment. Subjects in the 1250 μg treatment group, who had a BMI >26 kg/m2, had a steady increase in urinary Ca in the first 3 weeks of supplementation, and, overall, the relative risk of hypercalciuria was higher in the 1250 μg group than in the placebo group (P= 0·01). Although vitamin D supplementation remains a controversial issue, these data document that supplementing with ≤ 250 μg/week ( ≤ 10 000 IU/week) can improve or maintain vitamin D status in healthy populations without the risk of hypercalciuria, but 24 h urinary Ca excretion should be evaluated in healthy persons receiving vitamin D3 supplementation in weekly single doses of 1250 μg (50 000 IU).
Resumo:
Ascorbic acid or vitamin C is involved in a number of biochemical pathways that are important to exercise metabolism and the health of exercising individuals. This review reports the results of studies investigating the requirement for vitamin C with exercise on the basis of dietary vitamin C intakes, the response to supplementation and alterations in plasma, serum, and leukocyte ascorbic acid concentration following both acute exercise and regular training. The possible physiological significance of changes in ascorbic acid with exercise is also addressed. Exercise generally causes a transient increase in circulating ascorbic acid in the hours following exercise, but a decline below pre-exercise levels occurs in the days after prolonged exercise. These changes could be associated with increased exercise-induced oxidative stress. On the basis of alterations in the concentration of ascorbic acid within the blood, it remains unclear if regular exercise increases the metabolism of vitamin C. However, the similar dietary intakes and responses to supplementation between athletes and nonathletes suggest that regular exercise does not increase the requirement for vitamin C in athletes. Two novel hypotheses are put forward to explain recent findings of attenuated levels of cortisol postexercise following supplementation with high doses of vitamin C.
Resumo:
BACKGROUND: Migraine is a chronic disabling neurovascular condition that may in part be caused by endothelial and cerebrovascular disruption induced by hyperhomocysteinaemia. We have previously provided evidence indicating that reduction of homocysteine by vitamin supplementation can reduce the occurrence of migraine in women. The current study examined the genotypic effects of methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) gene variants on the occurrence of migraine in response to vitamin supplementation. METHODS: This was a 6-month randomized, double-blinded placebo-controlled trial of daily vitamin B supplementation (B(6), B(9) and B(12)) on reduction of homocysteine and of the occurrence of migraine in 206 female patients diagnosed with migraine with aura. RESULTS: Vitamin supplementation significantly reduced homocysteine levels (P<0.001), severity of headache in migraine (P=0.017) and high migraine disability (P=0.022) in migraineurs compared with the placebo effect (P>0.1). When the vitamin-treated group was stratified by genotype, the C allele carriers of the MTHFR C677T variant showed a higher reduction in homocysteine levels (P<0.001), severity of pain in migraine (P=0.01) and percentage of high migraine disability (P=0.009) compared with those with the TT genotypes. Similarly, the A allele carriers of the MTRR A66G variants showed a higher level of reduction in homocysteine levels (P<0.001), severity of pain in migraine (P=0.002) and percentage of high migraine disability (P=0.006) compared with those with the GG genotypes. Genotypic analysis for both genes combined indicated that the treatment effect modification of the MTRR variant was independent of the MTHFR variant. CONCLUSION: This provided further evidence that vitamin supplementation is effective in reducing migraine and also that both MTHFR and MTRR gene variants are acting independently to influence treatment response in female migraineurs.
Resumo:
BACKGROUND: Migraine is a prevalent and debilitating disease that may, in part, arise because of disruption in neurovascular endothelia caused by elevated homocysteine. This study examined the homocysteine-lowering effects of vitamin supplementation on migraine disability, frequency and severity and whether MTHFRC677T genotype influenced treatment response. METHODS: This was a randomized, double-blind placebo, controlled trial of 6 months of daily vitamin supplementation (i.e. 2 mg of folic acid, 25 mg vitamin B6, and 400 microg of vitamin B12) in 52 patients diagnosed with migraine with aura. FINDINGS: Vitamin supplementation reduced homocysteine by 39% (approximately 4 mumol/l) compared with baseline, a reduction that was greater then placebo (P=0.001). Vitamin supplementation also reduced the prevalence of migraine disability from 60% at baseline to 30% after 6 months (P=0.01), whereas no reduction was observed for the placebo group (P>0.1). Headache frequency and pain severity were also reduced (P<0.05), whereas there was no reduction in the placebo group (P>0.1). In this patient group the treatment effect on both homocysteine levels and migraine disability was associated with MTHFRC677T genotype whereby carriers of the C allele experienced a greater response compared with TT genotypes (P<0.05). INTERPRETATION: This study provides some early evidence that lowering homocysteine through vitamin supplementation reduces migraine disability in a subgroup of patients. Larger trials are now warranted to establish whether vitamin therapy is a safe, inexpensive and effective prophylactic option for treatment of migraine and whether efficacy is dependant on MTHFRC677T genotype.
Resumo:
Multiple Sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) resulting in accumulating neurological disability. The disorder is more prevalent at higher latitudes. To investigate VDR gene variation using three intragenic restriction fragment length polymorphisms (Apa I, Taq I and Fok I) in an Australian MS case-control population. One hundred and four Australian MS patients were studied with patients classified clinically as Relapsing Remitting MS (RR-MS), Secondary Progressive MS (SP-MS) or Primary Progressive MS (PP-MS). Also, 104 age-, sex-, and ethnicity-matched controls were investigated as a comparative group. Our results show a significant difference of genotype distribution frequency between the case and control groups for the functional exon 9 VDR marker Taq I (p(Gen) = 0.016) and interestingly, a stronger difference for the allelic frequency (p(All) = 0.0072). The Apa I alleles were also found to be associated with MS (p(All) = 0.04) but genotype frequencies were not significantly different from controls (p(Gen) = 0.1). The Taq and Apa variants are in very strong and significant linkage disequilibrium (D' = 0.96, P < 0.0001). The genotypic associations are strongest for the progressive forms of MS (SP-MS and PP-MS). Our results support a role for the VDR gene increasing the risk of developing multiple sclerosis, particularly the progressive clinical subtypes of MS.
Resumo:
Breast cancer is the leading cause of cancer death among Australian women and its incidence is annually increasing. Genetic factors are involved in the complex etiology of breast cancer. The seco-steroid hormone, 1.25 dihydroxy vitamin D3 can influence breast cancer cell growth in vitro. A number of studies have reported correlations between vitamin D receptor (VDR) gene polymorphisms and several diseases including prostate cancer and osteoporosis. In breast cancer, low vitamin D levels in serum are correlated with disease progression and bone metastases, a situation also noted in prostate cancer and suggesting the involvement of the VDR. In our study, 2 restriction fragment length polymorphisms (RFLP) in the 3' region (detected by Apa1 and Taq1) and an initiation codon variant in the 5' end of the VDR gene (detected by Fok1) were tested for association with breast cancer risk in 135 females with sporadic breast cancer and 110 cancer-free female controls. Allele frequencies of the 3' Apa1 polymorphism showed a significant association (p = 0.016; OR = 1.56, 95% CI = 1.09-2.24) while the Taq1 RFLP showed a similar trend (p = 0.053; OR = 1.45, 95% CI = 1.00-2.00). Allele frequencies of the Fok1 polymorphism were not significantly different (p = 0.97; OR = 0.99, 95% CI = 0.69-1.43) in the study population. Our results suggest that specific alleles of the VDR gene located near the 3' region may identify an increased risk for breast cancer and justify further investigation of the role of VDR in breast cancer.
Resumo:
Results of recent studies suggest that circulating levels of vitamin D may play an important role in cancer-specific outcomes. The present systematic review was undertaken to determine the prevalence of vitamin D deficiency (<25 nmol/L) and insufficiency (25-50 nmol/L) in cancer patients and to evaluate the association between circulating calcidiol (the indicator of vitamin D status) and clinical outcomes. A systematic search of original, peer-reviewed studies on calcidiol at cancer diagnosis, and throughout treatment and survival, was conducted yielding 4,706 studies. A total of 37 studies met the inclusion criteria for this review. Reported mean blood calcidiol levels ranged from 24.7 to 87.4 nmol/L, with up to 31% of patients identified as deficient and 67% as insufficient. The efficacy of cholecalciferol supplementation for raising the concentration of circulating calcidiol is unclear; standard supplement regimens of <1,000 IU D3 /day may not be sufficient to maintain adequate concentrations or prevent decreasing calcidiol. Dose-response studies linking vitamin D status to musculoskeletal and survival outcomes in cancer patients are lacking.
Resumo:
BACKGROUND: Observational data suggested that supplementation with vitamin D could reduce risk of infection, but trial data are inconsistent. OBJECTIVE: We aimed to examine the effect of oral vitamin D supplementation on antibiotic use. DESIGN: We conducted a post hoc analysis of data from pilot D-Health, which is a randomized trial carried out in a general community setting between October 2010 and February 2012. A total of 644 Australian residents aged 60-84 y were randomly assigned to receive monthly doses of a placebo (n = 214) or 30,000 (n = 215) or 60,000 (n = 215) IU oral cholecalciferol for ≤12 mo. Antibiotics prescribed during the intervention period were ascertained by linkage with pharmacy records through the national health insurance scheme (Medicare Australia). RESULTS: People who were randomly assigned 60,000 IU cholecalciferol had nonsignificant 28% lower risk of having antibiotics prescribed at least once than did people in the placebo group (RR: 0.72; 95% CI: 0.48, 1.07). In analyses stratified by age, in subjects aged ≥70 y, there was a significant reduction in antibiotic use in the high-dose vitamin D compared with placebo groups (RR: 0.53; 95% CI: 0.32, 0.90), whereas there was no effect in participants <70 y old (RR: 1.07; 95% CI: 0.58, 1.97) (P-interaction = 0.1). CONCLUSION: Although this study was a post hoc analysis and statistically nonsignificant, this trial lends some support to the hypothesis that supplementation with 60,000 IU vitamin D/mo is associated with lower risk of infection, particularly in older adults. The trial was registered at the Australian New Zealand Clinical Trials Registry (anzctr.org.au) as ACTRN12609001063202.
Resumo:
Vitamin D deficiency is common in pregnancy, and it has numerous health implications in both the mother and the baby. Vitamin D is made by skin from sun exposure or ingested from the diet. As there is a high prevalence of vitamin D deficiency in pregnant women, it is important to understand how pregnant women behave in relation to sun exposure and for vitamin D intake. This thesis aimed to answer this question. Through this study, public health and other intervention strategies to facilitate appropriate sun exposure and vitamin D intake will be developed.
Resumo:
Background Research has identified associations between serum 25(OH)D and a range of clinical outcomes in chronic kidney disease and wider populations. The present study aimed to investigate vitamin D deficiency/insufficiency in dialysis patients and the relationship with vitamin D intake and sun exposure. Methods A cross-sectional study was used. Participants included 30 peritoneal dialysis (PD) (43.3% male; 56.87 ± 16.16 years) and 26 haemodialysis (HD) (80.8% male; 63.58 ± 15.09 years) patients attending a department of renal medicine. Explanatory variables were usual vitamin D intake from diet/supplements (IU day−1) and sun exposure (min day−1). Vitamin D intake, sun exposure and ethnic background were assessed by questionnaire. Weight, malnutrition status and routine biochemistry were also assessed. Data were collected during usual department visits. The main outcome measure was serum 25(OH)D (nm). Results Prevalence of inadequate/insufficient vitamin D intake differed between dialysis modality, with 31% and 43% found to be insufficient (<50 nm) and 4% and 33% found to be deficient (<25 nm) in HD and PD patients, respectively (P < 0.001). In HD patients, there was a correlation between diet and supplemental vitamin D intake and 25(OH)D (ρ = 0.84, P < 0.001) and average sun exposure and 25(OH)D (ρ = 0.50, P < 0.02). There were no associations in PD patients. The results remained significant for vitamin D intake after multiple regression, adjusting for age, gender and sun exposure. Conclusions The results highlight a strong association between vitamin D intake and 25(OH)D in HD but not PD patients, with implications for replacement recommendations. The findings indicate that, even in a sunny climate, many dialysis patients are vitamin D deficient, highlighting the need for exploration of determinants and consequences.
Resumo:
CONTEXT AND OBJECTIVE: Suboptimal vitamin D status can be corrected by vitamin D supplementation, but individual responses to supplementation vary. We aimed to examine genetic and nongenetic determinants of change in serum 25-hydroxyvitamin D (25(OH)D) after supplementation. DESIGN AND PARTICIPANTS: We used data from a pilot randomized controlled trial in which 644 adults aged 60 to 84 years were randomly assigned to monthly doses of placebo, 30 000 IU, or 60 000 IU vitamin D3 for 12 months. Baseline characteristics were obtained from a self-administered questionnaire. Eighty-eight single-nucleotide polymorphisms (SNPs) in 41 candidate genes were genotyped using Sequenom MassArray technology. Serum 25(OH)D levels before and after the intervention were measured using the Diasorin Liaison platform immunoassay. We used linear regression models to examine associations between genetic and nongenetic factors and change in serum 25(OH)D levels. RESULTS: Supplement dose and baseline 25(OH)D level explained 24% of the variability in response to supplementation. Body mass index, self-reported health status, and ambient UV radiation made a small additional contribution. SNPs in CYP2R1, IRF4, MC1R, CYP27B1, VDR, TYRP1, MCM6, and HERC2 were associated with change in 25(OH)D level, although only CYP2R1 was significant after adjustment for multiple testing. Models including SNPs explained a similar proportion of variability in response to supplementation as models that included personal and environmental factors. CONCLUSION: Stepwise regression analyses suggest that genetic variability may be associated with response to supplementation, perhaps suggesting that some people might need higher doses to reach optimal 25(OH)D levels or that there is variability in the physiologically normal level of 25(OH)D.
Resumo:
Background Little is known about the relation between vitamin D status in early life and neurodevelopment outcomes. Objective This study was designed to examine the association of cord blood 25-hydroxyvitamin D [25(OH)D] at birth with neurocognitive development in toddlers. Methods As part of the China-Anhui Birth Cohort Study, 363 mother-infant pairs with completed data were selected. Concentrations of 25(OH)D in cord blood were measured by radioimmunoassay. Mental development index (MDI) and psychomotor development index (PDI) in toddlers were assessed at age 16–18 mo by using the Bayley Scales of Infant Development. The data on maternal sociodemographic characteristics and other confounding factors were also prospectively collected. Results Toddlers in the lowest quintile of cord blood 25(OH)D exhibited a deficit of 7.60 (95% CI: −12.4, −2.82; P = 0.002) and 8.04 (95% CI: −12.9, −3.11; P = 0.001) points in the MDI and PDI scores, respectively, compared with the reference category. Unexpectedly, toddlers in the highest quintile of cord blood 25(OH)D also had a significant deficit of 12.3 (95% CI: −17.9, −6.67; P < 0.001) points in PDI scores compared with the reference category. Conclusions This prospective study suggested that there was an inverted-U–shaped relation between neonatal vitamin D status and neurocognitive development in toddlers. Additional studies on the optimal 25(OH)D concentrations in early life are needed.
Resumo:
Antioxidants in acute physical exercise and exercise training remain a hot topic in sport nutrition, exercise physiology and biology, in general (Jackson, 2008; Margaritis and Rousseau, 2008; Gomez-Cabrera et al., 2012; Nikolaidis et al., 2012). During the past few decades, antioxidants have received attention predominantly as a nutritional strategy for preventing or minimising detrimental effects of reactive oxygen and nitrogen species (RONS), which are generated during and after strenuous exercise (Jackson, 2008, 2009; Powers and Jackson, 2008). Antioxidant supplementation has become a common practice among athletes as a means to (theoretically) reduce oxidative stress, promote recovery and enhance performance (Peternelj and Coombes, 2011). However, until now, requirements of antioxidant micronutrients and antioxidant compounds for athletes training for and competing in different sport events, including marathon running, triathlon races or team sport events involving repeated sprinting, have not been determined sufficiently (Williams et al., 2006; Margaritis and Rousseau, 2008). Crucially, evidence has been emerging that higher dosages of antioxidants may not necessarily be beneficial in this context, but can also elicit detrimental effects by interfering with performance-enhancing (Gomez-Cabrera et al., 2008) and health-promoting training adaptations (Ristow et al., 2009). As originally postulated in a pioneering study on exercise-induced production of RONS by Davies et al. (1982) in the early 1980s, evidence has been increasing in recent years that RONS are not only damaging agents, but also act as signalling molecules for regulating muscle function (Reid, 2001; Jackson, 2008) and for initiating adaptive responses to exercise (Jackson, 2009; Powers et al., 2010). The recognition that antioxidants could, vice versa, interact with the signalling pathways underlying the responses to acute (and repeated) bouts of exercise has contributed important novel aspects to the continued discussion on antioxidant requirements for athletes. In view of the recent advances in this field, it is the aim of this report to examine the current knowledge of antioxidants, in particular of vitamins C and E, in the basic nutrition of athletes. While overviews on related topics including basic mechanisms of exercise-induced oxidative stress, redox biology, antioxidant defence systems and a summary of studies on antioxidant supplementation during exercise training are provided, this does not mean that this report is comprehensive. Several issues of the expanding and multidisciplinary field of antioxidants and exercise are covered elsewhere in this book and/or in the literature. Exemplarily, the reader is referred to reviews on oxidative stress (Konig et al., 2001; Vollaard et al., 2005; Knez et al., 2006; Powers and Jackson, 2008; Nikolaidis et al., 2012), redox-sensitive signalling and muscle function (Reid, 2001; Vollaard et al., 2005; Jackson, 2008; Ji, 2008; Powers and Jackson, 2008; Powers et al., 2010; Radak et al., 2013) and antioxidant supplementation (Williams et al., 2006; Peake et al., 2007; Peternelj and Coombes, 2011) in the context with exercise. Within the scope of the report, we rather aim to address the question regarding requirements of antioxidants, specifically vitamins C and E, during exercise training, draw conclusions and provide practical implications from the recent research.
Resumo:
In Uganda, a significant proportion of the population depends on the micronutrient poor East African highland banana as a food staple. Consequently, micronutrient deficiencies such as vitamin A deficiency are an important health concern in the country. To reach most vulnerable rural poor populations, staple crops can be biofortified with essential micronutrients though conventional breeding or genetic engineering. This thesis provided proof of concept that genetically modified East African highland bananas with enhanced provitamin A levels can be generated and fully characterised in Uganda. In addition, provitamin A levels present in popular banana varieties was documented.