97 resultados para Vertebrate patterning
Resumo:
Carbon nanotubes (CNTs), experimentally observed for the first time twenty years ago, have triggered an unprecedented research effort, on the account of their astonishing structural, mechanical and electronic properties. Unfortunately, the current inability in predicting the CNTs’ properties and the difficulty in controlling their position on a substrate are often limiting factors for the application of this material in actual devices. This research aims at the creation of specific methodologies for controlled synthesis of CNTs, leading to effectively employ them in various fields of electronics, e.g. photovoltaics. Focused Ion Beam (FIB) patterning of Si surfaces is here proposed as a means for ordering the assembly of vertical-aligned CNTs. With this technique, substrates with specific nano-structured morphologies have been prepared, enabling a high degree of control over CNTs’ position and size. On these nano-structured substrates, the growth of CNTs has been realized by chemical vapor deposition (CVD), i.e. thermal decomposition of hydrocarbon gases over a heated catalyst. The most common materials used as catalysts in CVD are transition metals like Fe and Ni; however, their presence in the CNT products often results in shortcomings for electronic applications, especially for those based on silicon, being the metallic impurities incompatible with very-large-scale integration (VLSI) technology. In the present work the role of Ge dots as an alternative catalysts for CNTs synthesis on Si substrates has been thoroughly assessed, finding a close connection between the catalytic activity of such material and the CVD conditions, which can affect both size and morphology of the dots. Successful CNT growths from Ge dots have been obtained by CVD at temperatures ranging from 750 to 1000°C, with mixtures of acetylene and hydrogen in an argon carrier gas. The morphology of the Si surface is observed to play a crucial role for the outcome of the CNT synthesis: natural (i.e. chemical etching) and artificial (i.e. FIB patterning, nanoindentation) means of altering this morphology in a controlled way have been then explored to optimize the CNTs yield. All the knowledge acquired in this study has been finally applied to synthesize CNTs on transparent conductive electrodes (indium-tin oxide, ITO, coated glasses), for the creation of a new class of anodes for organic photovoltaics. An accurate procedure has been established which guarantees a controlled inclusion of CNTs on ITO films, preserving their optical and electrical properties. By using this set of conditions, a CNTenhanced electrode has been built, contributing to improve the power conversion efficiency of polymeric solar cells.
Resumo:
This study investigated potential palaeoclimate proxies provided by rare earth element (REE) geochemistry in speleothems and in clay mineralogy of cave sediments. Speleothem and sediment samples were collected from a series of cave fill deposits that occurred with rich vertebrate fossil assemblages in and around Mount Etna National Park, Rockhampton (central coastal Queensland). The fossil deposits range from Plio- Pleistocene to Holocene in age (based on uranium/thorium dating) and appear to represent depositional environments ranging from enclosed rainforest to semi-arid grasslands. Therefore, the Mount Etna cave deposits offer the perfect opportunity to test new palaeoclimate tools as they include deposits that span a known significant climate shift on the basis of independent faunal data. The first section of this study investigates the REE distribution of the host limestone to provide baseline geochemistry for subsequent speleothem investigations. The Devonian Mount Etna Beds were found to be more complex than previous literature had documented. The studied limestone massif is overturned, highly recrystallised in parts and consists of numerous allochthonous blocks with different spatial orientations. Despite the complex geologic history of the Mount Etna Beds, Devonian seawater-like REE patterns were recovered in some parts of the limestone and baseline geochemistry was determined for the bulk limestone for comparison with speleothem REE patterns. The second part of the study focused on REE distribution in the karst system and the palaeoclimatic implications of such records. It was found that REEs have a high affinity for calcite surfaces and that REE distributions in speleothems vary between growth bands much more than along growth bands, thus providing a temporal record that may relate to environmental changes. The morphology of different speleothems (i.e., stalactites, stalagmites, and flowstones) has little bearing on REE distributions provided they are not contaminated with particulate fines. Thus, baseline knowledge developed in the study suggested that speleothems were basically comparable for assessing palaeoclimatically controlled variations in REE distributions. Speleothems from rainforest and semi-arid phases were compared and it was found that there are definable differences in REE distribution that can be attributed to climate. In particular during semiarid phases, total REE concentration decreased, LREE became more depleted, Y/Ho increased, La anomalies were more positive and Ce anomalies were more negative. This may reflect more soil development during rainforest phases and more organic particles and colloids, which are known to transport REEs, in karst waters. However, on a finer temporal scale (i.e. growth bands) within speleothems from the same climate regime, no difference was seen. It is suggested that this may be due to inadequate time for soil development changes on the time frames represented by differences in growth band density. The third part of the study was a reconnaissance investigation focused on mineralogy of clay cave sediments, illite/kaolinite ratios in particular, and the potential palaeoclimatic implications of such records. Although the sample distribution was not optimal, the preliminary results suggest that the illite/kaolinite ratio increased during cold and dry intervals, consistent with decreased chemical weathering during those times. The study provides a basic framework for future studies at differing latitudes to further constrain the parameters of the proxy. The identification of such a proxy recorded in cave sediment has broad implications as clay ratios could potentially provide a basic local climate proxy in the absence of fossil faunas and speleothem material. This study suggests that REEs distributed in speleothems may provide information about water throughput and soil formation, thus providing a potential palaeoclimate proxy. It highlights the importance of understanding the host limestone geochemistry and broadens the distribution and potential number of cave field sites as palaeoclimate information no longer relies solely on the presence of fossil faunas and or speleothems. However, additional research is required to better understand the temporal scales required for the proxies to be recognised.
Resumo:
Australasian marsupials include three major radiations, the insectivorous/carnivorous Dasyuromorphia, the omnivorous bandicoots (Peramelemorphia), and the largely herbivorous diprotodontians. Morphologists have generally considered the bandicoots and diprotodontians to be closely related, most prominently because they are both syndactylous (with the 2nd and 3rd pedal digits being fused). Molecular studies have been unable to confirm or reject this Syndactyla hypothesis. Here we present new mitochondrial (mt) genomes from a spiny bandicoot (Echymipera rufescens) and two dasyurids, a fat-tailed dunnart (Sminthopsis crassicaudata) and a northern quoll (Dasyurus hallucatus). By comparing trees derived from pairwise base-frequency differences between taxa with standard (absolute, uncorrected) distance trees, we infer that composition bias among mt protein-coding and RNA sequences is sufficient to mislead tree reconstruction. This can explain incongruence between trees obtained from mt and nuclear data sets. However, after excluding major sources of compositional heterogeneity, both the “reduced-bias” mt and nuclear data sets clearly favor a bandicoot plus dasyuromorphian association, as well as a grouping of kangaroos and possums (Phalangeriformes) among diprotodontians. Notably, alternatives to these groupings could only be confidently rejected by combining the mt and nuclear data. Elsewhere on the tree, Dromiciops appears to be sister to the monophyletic Australasian marsupials, whereas the placement of the marsupial mole (Notoryctes) remains problematic. More generally, we contend that it is desirable to combine mt genome and nuclear sequences for inferring vertebrate phylogeny, but as separately modeled process partitions. This strategy depends on detecting and excluding (or accounting for) major sources of nonhistorical signal, such as from compositional nonstationarity.
Resumo:
The nitrile imine-mediated tetrazole-ene cycloaddition reaction (NITEC) is introduced as a powerful and versatile conjugation tool to covalently ligate macromolecules onto variable (bio)surfaces. The NITEC approach is initiated by UV irradiation and proceeds rapidly at ambient temperature yielding a highly fluorescent linkage. Initially, the formation of block copolymers by the NITEC methodology is studied to evidence its efficacy as a macromolecular conjugation tool. The grafting of polymers onto inorganic (silicon) and bioorganic (cellulose) surfaces is subsequently carried out employing the optimized reaction conditions obtained from the macromolecular ligation experiments and evidenced by surface characterization techniques, including X-ray photoelectron spectroscopy and FT-IR microscopy. In addition, the patterned immobilization of variable polymer chains onto profluorescent cellulose is achieved through a simple masking process during the irradiation. Photoinduced nitrile imine-alkene 1,3-dipolar cycloaddition (NITEC) is employed to covalently bind well-defined polymers onto silicon oxide or cellulose. A diaryl tetrazole-functionalized molecule is grafted via silanization or amidification, respectively. Under UV light, a reactive nitrile imine rapidly forms and reacts with maleimide-functionalized polymers yielding a fluorescent linkage. Via a masking method, polymeric fluorescent patterns are achieved.
Resumo:
This reversible garment, the grow-shrink-and-turncoat, is constructed in modules which allow it to be extended or tightened depending on the wearer. Later, it can be disassembled and then reassembled to form a new garment. The laser-cut holes allow for layers of cloth to be added or removed. The design was developed in part from a brainstorming activity with first and second year QUT students – their ideas included a garment which can be taken apart, a garment to fit many people, and most intriguingly, a garment that can open and ‘grow’ like a flower, swelling up in cold weather to warm the body. Taking these ideas, I developed a garment which can be disassembled, with layers added or subtracted by the wearer according to aesthetics and / or comfort. The shell is constructed from six squares of laser cut cloth, draped together with six smaller laser-cut rectangles, held in place with removable stitching. Additional squares and rectangles of cloth can be added / subtracted with ties knotted through the laser-cut holes. The laser cutting becomes a patterning device as well as integral to the construction of the garment. Conceptually, the garment is grounded in the notion of fabric as a precious resource – the pieces are designed to be disassembled at end-of-life, and then reconfigured into a fresh design.
Resumo:
Herbivory is generally regarded as negatively impacting on host plant fitness. Frugivorous insects, which feed directly on plant reproductive tissues, are predicted to be particularly damaging to hosts. We tested this prediction with the fruit fly, Bactrocera tryoni, by recording the impact of larval feeding on two direct (seed number and germination) and two indirect (fruit decay rate and attraction/deterrence of vertebrate frugivores) measures of host plant fitness. Experiments were done in the laboratory, glasshouse and tropical rainforest. We found no negative impact of larval feeding on seed number or germination for three test plants: tomato, capsicum and eggplant. Further, larval feeding accelerated the initiation of decay and increased the final level of fruit decay in tomatoes, apples, pawpaw and pear, a result considered to be beneficial to the fruit. In rainforest studies, native rodents preferred infested apple and pears compared to uninfested control fruit; however, there were no differences observed between treatments for tomato and pawpaw. For our study fruits, these results demonstrate that fruit fly larval infestation has neutral or beneficial impacts on the host plant, an outcome which may be largely influenced by the physical properties of the host. These results may contribute to explaining why fruit flies have not evolved the same level of host specialization generally observed for other herbivore groups.
Resumo:
Nosocomial wound infection is a disease that has to date been primarily understood through the language of science and biomedicine. This paper reports on findings from a sociological, interpretive study that focused on the experiential dimension of this phenomenon. The illness experience of a nosocomial wound infection is examined within a cultural milieu that values the smooth, untroubled body and alternatively ascribes cultural meaning to a body that has a definable illness. Within this context the person with a chronic wound from nosocomial infection defies normative categorisation and is thus situated outside the patterning of society. The human dimension of nosocomial wound infection includes the private, existential and embodied aspects of living with a chronic, infected wound. This report indicates that the experiential dimension is characterised by an embodied state of liminality. People with this illness live an indeterminate existence that is in-between health and illness, cure and disease. As such they have no recognised place in the medical or social world.
Resumo:
The Pattern and Structure Mathematics Awareness Project (PASMAP) has investigated the development of patterning and early algebraic reasoning among 4 to 8 year olds over a series of related studies. We assert that an awareness of mathematical pattern and structure enables mathematical thinking and simple forms of generalisation from an early age. The project aims to promote a strong foundation for mathematical development by focusing on critical, underlying features of mathematics learning. This paper provides an overview of key aspects of the assessment and intervention, and analyses of the impact of PASMAP on students’ representation, abstraction and generalisation of mathematical ideas. A purposive sample of four large primary schools, two in Sydney and two in Brisbane, representing 316 students from diverse socio-economic and cultural contexts, participated in the evaluation throughout the 2009 school year and a follow-up assessment in 2010. Two different mathematics programs were implemented: in each school, two Kindergarten teachers implemented the PASMAP and another two implemented their regular program. The study shows that both groups of students made substantial gains on the ‘I Can Do Maths’ assessment and a Pattern and Structure Assessment (PASA) interview, but highly significant differences were found on the latter with PASMAP students outperforming the regular group on PASA scores. Qualitative analysis of students’ responses for structural development showed increased levels for the PASMAP students; those categorised as low ability developed improved structural responses over a relatively short period of time.
Four new avian mitochondrial genomes help get to basic evolutionary questions in the late cretaceous
Resumo:
Good phylogenetic trees are required to test hypotheses about evolutionary processes. We report four new avian mitochondrial genomes, which together with an improved method of phylogenetic analysis for vertebrate mt genomes give results for three questions in avian evolution. The new mt genomes are: magpie goose (Anseranas semipalmata), an owl (morepork, Ninox novaeseelandiae); a basal passerine (rifleman, or New Zealand wren, Acanthisitta chloris); and a parrot (kakapo or owl-parrot, Strigops habroptilus). The magpie goose provides an important new calibration point for avian evolution because the well-studied Presbyornis fossils are on the lineage to ducks and geese, after the separation of the magpie goose. We find, as with other animal mitochondrial genomes, that RY-coding is helpful in adjusting for biases between pyrimidines and between purines. When RY-coding is used at third positions of the codon, the root occurs between paleognath and neognath birds (as expected from morphological and nuclear data). In addition, passerines form a relatively old group in Neoaves, and many modern avian lineages diverged during the Cretaceous. Although many aspects of the avian tree are stable, additional taxon sampling is required.
Resumo:
The sheep (Ovis aries) is commonly used as a large animal model in skeletal research. Although the sheep genome has been sequenced there are still only a limited number of annotated mRNA sequences in public databases. A complementary DNA (cDNA) library was constructed to provide a generic resource for further exploration of genes that are actively expressed in bone cells in sheep. It was anticipated that the cDNA library would provide molecular tools for further research into the process of fracture repair and bone homeostasis, and add to the existing body of knowledge. One of the hallmarks of cDNA libraries has been the identification of novel genes and in this library the full open reading frame of the gene C12orf29 was cloned and characterised. This gene codes for a protein of unknown function with a molecular weight of 37 kDa. A literature search showed that no previous studies had been conducted into the biological role of C12orf29, except for some bioinformatics studies that suggested a possible link with cancer. Phylogenetic analyses revealed that C12orf29 had an ancient pedigree with a homologous gene found in some bacterial taxa. This implied that the gene was present in the last common eukaryotic ancestor, thought to have existed more than 2 billion years ago. This notion was further supported by the fact that the gene is found in taxa belonging to the two major eukaryotic branches, bikonts and unikonts. In the bikont supergroup a C12orf29-like gene was found in the single celled protist Naegleria gruberi, whereas in the unikont supergroup, encompassing the metazoa, the gene is universal to all chordate and, therefore, vertebrate species. It appears to have been lost to the majority of cnidaria and protostomes taxa; however, C12orf29-like genes have been found in the cnidarian freshwater hydra and the protostome Pacific oyster. The experimental data indicate that C12orf29 has a structural role in skeletal development and tissue homeostasis, whereas in silico analysis of the human C12orf29 promoter region suggests that its expression is potentially under the control of the NOTCH, WNT and TGF- developmental pathways, as well SOX9 and BAPX1; pathways that are all heavily involved in skeletogenesis. Taken together, this investigation provides strong evidence that C12orf29 has a very important role in the chordate body plan, in early skeletal development, cartilage homeostasis, and also a possible link with spina bifida in humans.
Resumo:
We define a pair-correlation function that can be used to characterize spatiotemporal patterning in experimental images and snapshots from discrete simulations. Unlike previous pair-correlation functions, the pair-correlation functions developed here depend on the location and size of objects. The pair-correlation function can be used to indicate complete spatial randomness, aggregation or segregation over a range of length scales, and quantifies spatial structures such as the shape, size and distribution of clusters. Comparing pair-correlation data for various experimental and simulation images illustrates their potential use as a summary statistic for calibrating discrete models of various physical processes.
Resumo:
The T-box family transcription factor gene TBX20 acts in a conserved regulatory network, guiding heart formation and patterning in diverse species. Mouse Tbx20 is expressed in cardiac progenitor cells, differentiating cardiomyocytes, and developing valvular tissue, and its deletion or RNA interference-mediated knockdown is catastrophic for heart development. TBX20 interacts physically, functionally, and genetically with other cardiac transcription factors, including NKX2-5, GATA4, and TBX5, mutations of which cause congenital heart disease (CHD). Here, we report nonsense (Q195X) and missense (I152M) germline mutations within the T-box DNA-binding domain of human TBX20 that were associated with a family history of CHD and a complex spectrum of developmental anomalies, including defects in septation, chamber growth, and valvulogenesis. Biophysical characterization of wild-type and mutant proteins indicated how the missense mutation disrupts the structure and function of the TBX20 T-box. Dilated cardiomyopathy was a feature of the TBX20 mutant phenotype in humans and mice, suggesting that mutations in developmental transcription factors can provide a sensitized template for adult-onset heart disease. Our findings are the first to link TBX20 mutations to human pathology. They provide insights into how mutation of different genes in an interactive regulatory circuit lead to diverse clinical phenotypes, with implications for diagnosis, genetic screening, and patient follow-up.
Resumo:
To examine matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinases (TIMP) mRNA levels in archival breast cancer biopsies, we employed microdissection to separate tumour tissue from the surrounding breast tissue, or stroma and RT-PCR to determine gross qualitative and small quantitative differences in the patterns of expression. In this study, a significant correlation (p < 0.05, by Mann-Whitney U analysis) between TIMP-2 expression and lymph node involvement was identified, while MMP-11 and TIMP-1 expression patterning also significantly (p < 0.05) differed between those tumours showing calcification and those that did not. When compared by Spearmans’ ρ correlation analysis, a significant association (p < 0.05, ρ = 0.404) was identified in the pattern of MMP-2 and MMP-9 gene expression. In this study, the use of microdissection and a systematic strategy of RT-PCR analysis have allowed us to investigate localized MMP and MMP inhibitor expression within breast tumours. We have identified patterns of gene expression that may further reveal aspects of breast carcinogenesis, and a robust method for examining changes in clinically important genes using archival biopsies and across stroma-tumour boundaries.
Resumo:
To examine gene-expression patterning in late-stage breast cancer biopsies, we used a microdissection technique to separate tumor from the surrounding breast tissue or stroma. A DD-PCR protocol was then used to amplify expressed products, which were resolved using PAGE and used as probe to hybridize with representative human arrays and cDNA libraries. The probe derived from the tumor–stroma comparison was hybridized with a gene array and an arrayed cDNA library derived from a GCT of bone; 21 known genes or expressed sequence tags were detected, of which 17 showed differential expression. These included factors associated with epithelial to mesenchymal transition (vimentin), the cargo selection protein (TIP47) and the signal transducer and activator of transcription (STAT3). Northern blot analysis was used to confirm those genes also expressed by representative breast cancer cell lines. Notably, 6 genes of unknown function were restricted to tumor while the majority of stroma-associated genes were known. When applied to transformed breast cancer cell lines (MDA-MB-435 and T47D) that are known to have different metastatic potential, DD array analysis revealed a further 20 genes; 17 of these genes showed differential expression. Use of microdissection and the DD-PCR array protocol allowed us to identify factors whose localized expression within the breast may play a role in abnormal breast development or breast carcinogenesis.
Resumo:
This study investigates the use of patterned collectors to increase the pore size of electrospun scaffolds for enhanced cell infiltration. The morphology of the patterned scaffolds was investigated by scanning electron microscopy, which showed that the collector pattern was accurately mimicked by the electrospun fibres. We observed an enlargement in the pore size and in the pore size distribution compared with conventional electrospinning. Mechanical testing revealed that the mechanical properties could be tailored, to some extent, according to the patterning and that the patterned scaffolds were softer than standard electrospun scaffolds. When NIH 3T3 fibroblasts were seeded onto patterned collectors improved cell infiltration was observed. Cells were able to penetrate up to 250 μm into the scaffolds, compared with 30 μm for the standard scaffolds. This increase in the depth of infiltration occurred as early as 24 h post-seeding and remained constant over 7 days.