92 resultados para Vascular Cell Adhesion Molecule-1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leukocytes are critical effectors of inflammation and tumor biology. Chemokine-like factors produced by such inflammatory sites are key mediators of tumor growth that activate leukocytic recruitment and tumor infiltration and suppress immune surveillance. Here we report that the endocrine peptide hormone, relaxin, is a regulator of leukocyte biology with properties important in recruitment to sites of inflammation. This study uses the human monocytic cell line THP-1 and normal human peripheral blood mononuclear cells to define a novel role for relaxin in regulation of leukocyte adhesion and migration. Our studies indicate that relaxin promotes adenylate cyclase activation, substrate adhesion, and migratory capacity of mononuclear leukocytes through a relaxin receptor LGR7-dependent mechanism. Relaxin-stimulated cAMP accumulation was observed to occur primarily in non-adherent cells. Relaxin stimulation results in increased substrate adhesion and increased migratory activity of leukocytes. In addition, relaxin-stimulated substrate adhesion resulted in enhanced chemotaxis to monocyte chemoattractant protein-1. These responses in THP-1 and peripheral blood mononuclear cells are relaxin dose-dependent and proportional to cAMP accumulation. We further demonstrate that LGR7 is critical for mediating these biological responses by use of RNA interference lentiviral short hairpin constructs. In summary, we provide evidence that relaxin is a novel leukocyte stimulatory agent with properties affecting adhesion and chemomigration

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The importance of mitogen-activated protein kinase signaling in melanoma is underscored by the prevalence of activating mutations in N-Ras and B-Raf, yet clinical development of inhibitors of this pathway has been largely ineffective, suggesting that alternative oncogenes may also promote melanoma. Notch is an interesting candidate that has only been correlated with melanoma development and progression; a thorough assessment of tumor-initiating effects of activated Notch on human melanocytes would clarify the mounting correlative evidence and perhaps identify a novel target for an otherwise untreatable disease. Analysis of a substantial panel of cell lines and patient lesions showed that Notch activity is significantly higher in melanomas than their nontransformed counterparts. The use of a constitutively active, truncated Notch transgene construct (N(IC)) was exploited to determine if Notch activation is a "driving" event in melanocytic transformation or instead a "passenger" event associated with melanoma progression. N(IC)-infected melanocytes displayed increased proliferative capacity and biological features more reminiscent of melanoma, such as dysregulated cell adhesion and migration. Gene expression analyses supported these observations and aided in the identification of MCAM, an adhesion molecule associated with acquisition of the malignant phenotype, as a direct target of Notch transactivation. N(IC)-positive melanocytes grew at clonal density, proliferated in limiting media conditions, and also exhibited anchorage-independent growth, suggesting that Notch alone is a transforming oncogene in human melanocytes, a phenomenon not previously described for any melanoma oncogene. This new information yields valuable insight into the basic epidemiology of melanoma and launches a realm of possibilities for drug intervention in this deadly disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: Electrospun nanofibers represent potent guidance substrates for nervous tissue repair. Development of nanofiber-based scaffolds for CNS repair requires, as a first step, an understanding of appropriate neural cell type-substrate interactions. Materials & methods: Astrocyte–nanofiber interactions (e.g., adhesion, proliferation, process extension and migration) were studied by comparing human neural progenitor-derived astrocytes (hNP-ACs) and a human astrocytoma cell line (U373) with aligned polycaprolactone (PCL) nanofibers or blended (25% type I collagen/75% PCL) nanofibers. Neuron–nanofiber interactions were assessed using a differentiated human neuroblastoma cell line (SH-SY5Y). Results & discussion: U373 cells and hNP-AC showed similar process alignment and length when associated with PCL or Type I collagen/PCL nanofibers. Cell adhesion and migration by hNP-AC were clearly improved by functionalization of nanofiber surfaces with type I collagen. Functionalized nanofibers had no such effect on U373 cells. Another clear difference between the U373 cells and hNP-AC interactions with the nanofiber substrate was proliferation; the cell line demonstrating strong proliferation, whereas the hNP-AC line showed no proliferation on either type of nanofiber. Long axonal growth (up to 600 µm in length) of SH-SY5Y neurons followed the orientation of both types of nanofibers even though adhesion of the processes to the fibers was poor. Conclusion: The use of cell lines is of only limited predictive value when studying cell–substrate interactions but both morphology and alignment of human astrocytes were affected profoundly by nanofibers. Nanofiber surface functionalization with collagen significantly improved hNP-AC adhesion and migration. Alternative forms of functionalization may be required for optimal axon–nanofiber interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Random walk models based on an exclusion process with contact effects are often used to represent collective migration where individual agents are affected by agent-to-agent adhesion. Traditional mean field representations of these processes take the form of a nonlinear diffusion equation which, for strong adhesion, does not predict the averaged discrete behavior. We propose an alternative suite of mean-field representations, showing that collective migration with strong adhesion can be accurately represented using a moment closure approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell-surface proteoglycans participate in several biological functions such as cell cell and cell-matrix interactions, cell adhesion, the binding to various growth factors as co-receptors and repair. To understand better the expression and distribution of cell-surface proteoglycans in the periodontal tissues, an immunohistochemical evaluation of the normal Lewis rat molar periodontium using panels of antibodies for syndecan-1, -2, -4, glypican and betaglycan was carried out. Our results demonstrated the expression and distribution of all proteoglycans in the suprabasal gingival epithelium, soft and hard connective tissues. Both cellular and matrix localization was evident within the various periodontal compartments. The presence of these cell-surface proteoglycans indicates the potential for roles in the process of tissue homeostasis, repair or regeneration in periodontium of which each function requires further study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Epidermogenesis and epidermal wound healing are tightly regulated processes during which keratinocytes must migrate, proliferate and differentiate. Cell to cell adhesion is crucial to the initiation and regulation of these processes. CUB domain containing protein 1 (CDCP1) is a transmembrane glycoprotein that is differentially tyrosine phosphorylated during changes in cell adhesion and survival signalling and is expressed by keratinocytes in native human skin, as well as in primary cultures. Objectives: To investigate the expression of CDCP1 during epidermogenesis and its role in keratinocyte migration. Methods: We examined both human skin tissue and an in vitro three-dimensional human skin equivalent model to examine the expression of CDCP1 during epidermogenesis. To examine the role of CDCP1 in keratinocyte migration we used a function blocking anti-CDCP1 antibody and a real-time Transwell™ cell migration assay. Results: Immunohistochemical analysis indicated that in native human skin CDCP1 is expressed in the stratum basale and stratum spinosum. In contrast, during epidermogenesis in a 3-dimensional human skin equivalent model CDCP1 was expressed only in the stratum basale, with localization restricted to the cell-cell membrane. No expression was detected in basal keratinocytes that were in contact with the basement membrane. Further, an anti-CDCP1 function blocking antibody was shown to disrupt keratinocyte chemotactic migration in vitro. Conclusions: These findings delineate the expression of CDCP1 in human epidermal keratinocytes during epidermogenesis and demonstrate that CDCP1 is involved in keratinocyte migration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A baculovirus-insect cell expression system potentially provides the means to produce prophylactic HIV-1 virus-like particle (VLP) vaccines inexpensively and in large quantities. However, the system must be optimized to maximize yields and increase process efficiency. In this study, we optimized the production of two novel, chimeric HIV-1 VLP vaccine candidates (GagRT and GagTN) in insect cells. This was done by monitoring the effects of four specific factors on VLP expression: these were insect cell line, cell density, multiplicity of infection (MOI), and infection time. The use of western blots, Gag p24 ELISA, and four-factorial ANOVA allowed the determination of the most favorable conditions for chimeric VLP production, as well as which factors affected VLP expression most significantly. Both VLP vaccine candidates favored similar optimal conditions, demonstrating higher yields of VLPs when produced in the Trichoplusia ni Pro insect cell line, at a cell density of 1 × 106 cells/mL, and an infection time of 96 h post infection. It was found that cell density and infection time were major influencing factors, but that MOI did not affect VLP expression significantly. This work provides a potentially valuable guideline for HIV-1 protein vaccine optimization, as well as for general optimization of a baculovirus-based expression system to produce complex recombinant proteins. © 2009 American Institute of Chemical Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Chemoresistance is a critical feature of advanced ovarian cancer with only 30% of patients surviving longer than 5 years. We have previously shown that four kallikrein-related (KLK) peptidases, KLK4, KLK5, KLK6 and KLK7 (KLK4-7), are implicated in peritoneal invasion and tumour growth, but underlying mechanisms were not identified. We also reported that KLK7 overexpression confers chemoresistance to paclitaxel, and cell survival via integrins. In this study, we further explored the functional consequenses of overexpression of all four KLKs (KLK4-7) simultaneously in the ovarian cancer cell line, OV-MZ-6, and its impact on integrin expression and signalling, cell adhesion and survival as contributors to chemoresistance and metastatic progression. METHODS: Quantitative gene and protein expression analyses, confocal microscopy, cell adhesion and chemosensitivity assays were performed. RESULTS: Expression of α5β1/αvβ3 integrins was downregulated upon combined stable KLK4-7 overexpression in OV-MZ-6 cells. Accordingly, the adhesion of these cells to vitronectin and fibronectin, the extracellular matrix binding proteins of α5β1/αvβ3 integrins and two predominant proteins of the peritoneal matrix, was decreased. KLK4-7-transfected cells were more resistant to paclitaxel (10-100 nmol/L: 38-54%), but not to carboplatin, which was associated with decreased apoptotic stimuli. However, the KLK4-7-induced paclitaxel resistance was not blocked by the MEK1/2 inhibitor, U0126. CONCLUSIONS: This study demonstrates that combined KLK4-7 expression by ovarian cancer cells promotes reduced integrin expression with consequently less cell-matrix attachment, and insensitivity to paclitaxel mediated by complex integrin and MAPK independent interactions, indicative of a malignant phenotype and disease progression suggesting a role for these KLKs in this process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endothelin-1 (ET-1) is a potent vasoactive peptide and a hypoxia-inducible angiogenic growth factor associated with the development and growth of solid tumours. This study evaluated the expression of big endothelin-1 (big ET-1), a stable precursor of ET-1, and ET-1 in non-small cell lung cancer (NSCLC). Big ET-1 expression was evaluated in paraffin-embedded tissue sections from 10 NSCLC tumours using immunohistochemistry and in situ hybridisation. The production of big ET-1 and ET-1 was studied in six established NSCLC cell lines. The plasma concentrations of big ET-1 were measured in 30 patients with proven NSCLC prior to chemotherapy by means of a sandwich enzyme-linked immunoassay and compared to levels in 20 normal controls. Big ET-1 immunostaining was detected in the cancer cells of all tumours studied. Using in situ hybridisation, tumour cell big ET-1 mRNA expression was demonstrated in all samples. All six NSCLC cell lines expressed ET-1, with big ET-1 being detected in three. The median big ET-1 plasma level in patients with NSCLC was 5.4 pg/mL (range 0-22.7 pg/mL) and was significantly elevated compared to median big ET-1 plasma levels in controls, 2.1 pg/mL (1.2-13.4 pg/mL) (p=0.0001). Furthermore, patients with plasma big ET-1 levels above the normal range (upper tertile) had a worse outcome (p=0.01). In conclusion, big ET-1/ET-1 is expressed by resected NSCLC specimens and tumour cell lines. Plasma big ET-1 levels are elevated in NSCLC patients compared to controls with levels >7.8 pg/mL being associated with a worse outcome. The development of selective ET-1 antagonists such as Atrasentan indicates that ET-1 may be a therapeutic target in NSCLC. © 2004 Wichtig Editore.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell-to-cell adhesion is an important aspect of malignant spreading that is often observed in images from the experimental cell biology literature. Since cell-to-cell adhesion plays an important role in controlling the movement of individual malignant cells, it is likely that cell-to-cell adhesion also influences the spatial spreading of populations of such cells. Therefore, it is important for us to develop biologically realistic simulation tools that can mimic the key features of such collective spreading processes to improve our understanding of how cell-to-cell adhesion influences the spreading of cell populations. Previous models of collective cell spreading with adhesion have used lattice-based random walk frameworks which may lead to unrealistic results, since the agents in the random walk simulations always move across an artificial underlying lattice structure. This is particularly problematic in high-density regions where it is clear that agents in the random walk align along the underlying lattice, whereas no such regular alignment is ever observed experimentally. To address these limitations, we present a lattice-free model of collective cell migration that explicitly incorporates crowding and adhesion. We derive a partial differential equation description of the discrete process and show that averaged simulation results compare very well with numerical solutions of the partial differential equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The expansion of cell colonies is driven by a delicate balance of several mechanisms including cell motility, cell-to-cell adhesion and cell proliferation. New approaches that can be used to independently identify and quantify the role of each mechanism will help us understand how each mechanism contributes to the expansion process. Standard mathematical modelling approaches to describe such cell colony expansion typically neglect cell-to-cell adhesion, despite the fact that cell-to-cell adhesion is thought to play an important role. Results We use a combined experimental and mathematical modelling approach to determine the cell diffusivity, D, cell-to-cell adhesion strength, q, and cell proliferation rate, ?, in an expanding colony of MM127 melanoma cells. Using a circular barrier assay, we extract several types of experimental data and use a mathematical model to independently estimate D, q and ?. In our first set of experiments, we suppress cell proliferation and analyse three different types of data to estimate D and q. We find that standard types of data, such as the area enclosed by the leading edge of the expanding colony and more detailed cell density profiles throughout the expanding colony, does not provide sufficient information to uniquely identify D and q. We find that additional data relating to the degree of cell-to-cell clustering is required to provide independent estimates of q, and in turn D. In our second set of experiments, where proliferation is not suppressed, we use data describing temporal changes in cell density to determine the cell proliferation rate. In summary, we find that our experiments are best described using the range D = 161 - 243 ?m2 hour-1, q = 0.3 - 0.5 (low to moderate strength) and ? = 0.0305 - 0.0398 hour-1, and with these parameters we can accurately predict the temporal variations in the spatial extent and cell density profile throughout the expanding melanoma cell colony. Conclusions Our systematic approach to identify the cell diffusivity, cell-to-cell adhesion strength and cell proliferation rate highlights the importance of integrating multiple types of data to accurately quantify the factors influencing the spatial expansion of melanoma cell colonies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms leading to colonization of metastatic breast cancer cells (BCa) in the skeleton are still not fully understood. Here, we demonstrate that mineralized extracellular matrices secreted by primary human osteoblasts (hOBM) modulate cellular processes associated with BCa colonization of bone. A panel of four BCa cell lines of different bone-metastatic potential (T47D, SUM1315, MDA-MB-231, and the bone-seeking subline MDA-MB-231BO) was cultured on hOBM. After 3 days, the metastatic BCa cells had undergone morphological changes on hOBM and were aligned along the hOBM's collagen type I fibrils that were decorated with bone-specific proteins. In contrast, nonmetastatic BCa cells showed a random orientation on hOBM. Atomic force microscopy-based single-cell force spectroscopy revealed that the metastatic cell lines adhered more strongly to hOBM compared with nonmetastatic cells. Function-blocking experiments indicated that β1-integrins mediated cell adhesion to hOBM. In addition, metastatic BCa cells migrated directionally and invaded hOBM, which was accompanied by enhanced MMP-2 and -9 secretion. Furthermore, we observed gene expression changes associated with osteomimickry in BCa cultured on hOBM. As such, osteopontin mRNA levels were significantly increased in SUM1315 and MDA-MB-231BO cells in a β1-integrin-dependent manner after growing for 3 days on hOBM compared with tissue culture plastic. In conclusion, our results show that extracellular matrices derived from human osteoblasts represent a powerful experimental platform to dissect mechanisms underlying critical steps in the development of bone metastases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthetic hydrogels selectively decorated with cell adhesion motifs are rapidly emerging as promising substrates for 3D cell culture. When cells are grown in 3D they experience potentially more physiologically relevant cell-cell interactions and physical cues compared with traditional 2D cell culture on stiff surfaces. A newly developed polymer based on poly(2-oxazoline)s has been used for the first time to control attachment of fibroblast cells and is discussed here for its potential use in 3D cell culture with particular focus on cancer cells towards the ultimate aim of high throughput screening of anti-cancer therapies. Advantages and limitations of using poly(2-oxazoline) hydrogels are discussed and compared with more established polymers, especially polyethylene glycol (PEG).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blood vascular cells and lymphatic endothelial cells (BECs and LECs, respectively) form two separate vascular systems and are functionally distinct cell types or lineages with characteristic gene expression profiles. Interconversion between these cell types has not been reported. Here, we show that in conventional in vitro angiogenesis assays, human BECs of fetal or adult origin show altered gene expression that is indicative of transition to a lymphatic-like phenotype. This change occurs in BECs undergoing tubulogenesis in fibrin, collagen or Matrigel assays, but is independent of tube formation per se, because it is not inhibited by a metalloproteinase inhibitor that blocks tubulogenesis. It is also reversible, since cells removed from 3D tubules revert to a BEC expression profile upon monolayer culture. Induction of the lymphatic-like phenotype is partially inhibited by co-culture of HUVECs with perivascular cells. These data reveal an unexpected plasticity in endothelial phenotype, which is regulated by contact with the ECM environment and/or cues from supporting cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE Colorectal signet-ring cell carcinoma (SRCC) is rare, and very little detailed information on the molecular biology of the disease is available. METHODS The literature on the clinical, pathological and, in particular, the molecular biology of this rare entity was critically reviewed. The reviewed articles take into account a total of 1,817 cases of SRCC, but only 143 cases have molecular data available. The characteristics of two patients with colorectal SRCC were also discussed. RESULTS Colorectal SRCC mostly occurs in younger patients, is larger and has different site predilection compared with conventional colorectal adenocarcinoma. It can occur as one of the synchronous cancers in the colorectum. The cancer is usually diagnosed at advanced stages because of the late manifestation of symptoms, and aggressive treatment strategy is required. Limited reports in the literature have shown that the variant of colorectal cancer demonstrated a different pattern of genetic alterations of common growth kinase-related oncogenes (K-ras, BRAF), tumour suppressor genes (p53, p16), gene methylation and cell adhesion-related genes related to the Wingless signalling pathway (E-cadherin and beta-catenin) from conventional colorectal adenocarcinoma. Colorectal SRCC also showed high expression of mucin-related genes and genes related to the gastrointestinal system. There was also a higher prevalence of microsatellite instability-high tumours and low Cox-2 expression in colorectal SRCC as opposed to conventional adenocarcinoma. CONCLUSIONS Colorectal SRCC has unique molecular pathological features. The unique molecular profiles in SRCC may provide molecular-based improvements to patient management in colorectal SRCC.