209 resultados para Urinary tract infections


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pathogenic bacteria have a large repertoire of surface organelles involved in adherence, motility and protein export, but how individual bacteria co-ordinate surface organelle expression to prevent interference and excessive immune stimulation is unclear. Phase variation is a mechanism by which expression of surface factors is limited to a fraction of the bacterial population; however, the presence of multiple homologous surface structures controlled by related mechanisms and regulators antagonizes the independent expression achieved by phase variation. To investigate whether other mechanisms have evolved to sort out the bacterial cell surface, we examined regulatory cross-talk between multiple phase-variable pyelonephritis-associated pili (pap) operons in Escherichia coli isolates associated with urinary tract infections. Allelic variation identified in the regulatory regions and regulators acts synergistically to limit coexpression of homologous fimbrial operons. In particular, there is evidence that papI is under positive selection and PapI variants displayed differences in their capacity to activate related pap operons. Alleles of the high-affinity binding site for PapB were shown to contain a variable number of (T/A)3 repeats occurring every 9 bp that altered the sensitivity of pap operon activation. Taken together with other examples of surface organelle cross-talk, we illustrate how this regulation could promote sequential expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urinary tract infections (UTIs) caused by uropathogenic Escherichia coli (UPEC) are a significant health concern, exacerbated by the rapid emergence of multidrug resistant strains refractory to antibiotic treatment. P fimbriae are strongly associated with upper urinary tract colonization due to specific binding to α-D-galactopyranosyl-(1-4)-β-D-galactopyranoside receptors in the kidneys. Thus, inhibiting P-fimbrial adhesion may reduce the incidence of UPEC-mediated UTI. E. coli 83972 is an asymptomatic bacteriuria isolate successfully used as a prophylactic agent to prevent UTI in human studies. We constructed a recombinant E. coli 83972 strain displaying a surface-located oligosaccharide P fimbriae receptor mimic that bound to P-fimbriated E. coli producing any of the 3 PapG adhesin variants. The recombinant strain, E. coli 83972:: lgtCE, impaired P fimbriae–mediated adhesion to human erythrocytes and kidney epithelial cells. Additionally, E. coli 83972::lgtCE impaired urine colonization by UPEC in a mouse UTI model, demonstrating its potential as a prophylactic agent to prevent UTI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The majority of Escherichia coli strains isolated from urinary tract infections have the potential to express multiple fimbriae. Two of the most common fimbrial adhesins are type 1 fimbriae and pyelonephritis-associated pili (Pap). Previous research has shown that induced, plasmid-based expression of a Pap regulator, papB, and its close homologues can prevent inversion of the fim switch controlling the expression of type 1 fimbriae. The aim of the present study was to determine if this cross-regulation occurs when PapB is expressed from its native promoter in the chromosome of E. coli K-12 and clinical isolates. The regulation was examined in three ways: (1) mutated alleles of the pap regulatory region, including papB and papI, that maintain the pap promoter in either the off or the on phase were exchanged into the chromosome of both E. coli K-12 and the clinical isolate E. coli CFT073, and the effect on type 1 fimbrial expression was measured; (2) type 1 fimbrial expression was determined using a novel fimS : : gfp+ reporter system in mutants of the clinical isolate E. coli 536 in which combinations of complete fimbrial clusters had been deleted; (3) type 1 fimbrial expression was determined in a range of clinical isolates and compared with both the number of P clusters and their expression. All three approaches demonstrated that P expression represses type 1 fimbrial expression. Using a number of novel genetic approaches, this work extends the initial finding that PapB inhibits FimB recombination to the impact of this regulation in clinical isolates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urinary tract infections (UTI) are among the most common infections in humans. Uropathogenic Escherichia coli (UPEC) can invade and replicate within bladder epithelial cells, and some UPEC strains can also survive within macrophages. To understand the UPEC transcriptional program associated with intramacrophage survival, we performed host–pathogen co-transcriptome analyses using RNA sequencing. Mouse bone marrow-derived macrophages (BMMs) were challenged over a 24 h time course with two UPEC reference strains that possess contrasting intramacrophage phenotypes: UTI89, which survives in BMMs, and 83972, which is killed by BMMs. Neither of these strains caused significant BMM cell death at the low multiplicity of infection that was used in this study. We developed an effective computational framework that simultaneously separated, annotated, and quantified the mammalian and bacterial transcriptomes. BMMs responded to the two UPEC strains with a broadly similar gene expression program. In contrast, the transcriptional responses of the UPEC strains diverged markedly from each other. We identified UTI89 genes upregulated at 24 h post-infection, and hypothesized that some may contribute to intramacrophage survival. Indeed, we showed that deletion of one such gene (pspA) significantly reduced UTI89 survival within BMMs. Our study provides a technological framework for simultaneously capturing global changes at the transcriptional level in co-cultures, and has generated new insights into the mechanisms that UPEC use to persist within the intramacrophage environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uropathogenic Escherichia coli (UPEC) is the main etiological agent of urinary tract infections (UTIs). Little is known about interactions between UPEC and the inflammasome, a key innate immune pathway. Here we show that UPEC strains CFT073 and UTI89 trigger inflammasome activation and lytic cell death in human macrophages. Several other UPEC strains, including two multidrug-resistant ST131 isolates, did not kill macrophages. In mouse macrophages, UTI89 triggered cell death only at a high multiplicity of infection, and CFT073-mediated inflammasome responses were completely NLRP3-dependent. Surprisingly, CFT073- and UTI89-mediated responses only partially depended on NLRP3 in human macrophages. In these cells, NLRP3 was required for interleukin-1β (IL-1β) maturation, but contributed only marginally to cell death. Similarly, caspase-1 inhibition did not block cell death in human macrophages. In keeping with such differences, the pore-forming toxin α-hemolysin mediated a substantial proportion of CFT073-triggered IL-1β secretion in mouse but not human macrophages. There was also a more substantial α-hemolysin-independent cell death response in human vs. mouse macrophages. Thus, in mouse macrophages, CFT073-triggered inflammasome responses are completely NLRP3-dependent, and largely α-hemolysin-dependent. In contrast, UPEC activates an NLRP3-independent cell death pathway and an α-hemolysin-independent IL-1β secretion pathway in human macrophages. This has important implications for understanding UTI in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uropathogenic Escherichia coli (UPEC) are the major cause of urinary tract infections. For successful colonisation of the urinary tract, UPEC employ multiple surface-exposed or secreted virulence factors, including adhesins and iron uptake systems. Whilst individual UPEC strains and their virulence factors have been the focus of extensive research, there have been no outer membrane (OM) proteomic studies based on large clinical UPEC collections, primarily due to limitations of traditional methods. In this study, a high-throughput method based on tandem mass-spectrometry of EDTA heat-induced outer membrane vesicles (OMVs) was developed for the characterisation of the UPEC surface-associated proteome. The method was applied to compare the OM proteome of fifty-four UPEC isolates, resulting in the identification of 8789 proteins, consisting of 619 unique proteins, which were subsequently interrogated for their subcellular origin, prevalence and homology to characterised virulence factors. Multiple distinct virulence-associated proteins were identified, including two novel putative iron uptake proteins, an uncharacterised type of chaperone-usher fimbriae and various highly prevalent hypothetical proteins. Our results give fundamental insight into the physiology of UPEC and provide a framework for understanding the composition of the UPEC OM proteome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urinary tract infections are a major source of morbidity for women and the elderly, with Uropathogenic Escherichia coli (UPEC) being the most prevalent causative pathogen. Studies in recent years have defined a key anti-inflammatory role for Interleukin-10 (IL-10) in urinary tract infection mediated by UPEC and other uropathogens. We investigated the nature of the IL-10-producing interactions between UPEC and host cells by utilising a novel co-culture model that incorporated lymphocytes, mononuclear and uroepithelial cells in histotypic proportions. This co-culture model demonstrated synergistic IL-10 production effects between monocytes and uroepithelial cells following infection with UPEC. Membrane inserts were used to separate the monocyte and uroepithelial cell types during infection and revealed two synergistic IL-10 production effects based on contact-dependent and soluble interactions. Analysis of a comprehensive set of immunologically relevant biomarkers in monocyte-uroepithelial cell co-cultures highlighted that multiple cytokine, chemokine and signalling factors were also produced in a synergistic or antagonistic fashion. These results demonstrate that IL-10 responses to UPEC occur via multiple interactions between several cells types, implying a complex role for infection-related IL-10 during UTI. Development and application of the co-culture model described in this study is thus useful to define the degree of contact dependency of biomarker production to UPEC, and highlights the relevance of histotypic co-cultures in studying complex host-pathogen interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uropathogenic Escherichia coli is the primary cause of urinary tract infections, which affects over 60% of women during their lifetime. UPEC exhibits a number of virulence traits that facilitate colonization of the bladder, including inhibition of cytokine production by bladder epithelial cells. The goal of this study was to identify the mechanism of this inhibition. We observed that cytokine suppression was associated with rapid cytotoxicity toward epithelial cells. We found that cytotoxicity, cytokine suppression and alpha-hemolysin production were all tightly linked in clinical isolates. We screened a UPEC fosmid library and identified clones that gained the cytotoxicity and cytokine-suppression phenotypes. Both clones contained fosmids encoding a PAI II(J96)-like domain and expressed the alpha-hemolysin (hlyA) encoded therein. Mutation of the fosmid-encoded hly operon abolished cytotoxicity and cytokine suppression. Similarly, mutation of the chromosomal hlyCABD operon of UPEC isolate F11 also abolished these phenotypes, and they could be restored by introducing the PAI II(J96)-like domain-encoding fosmid. We also examined the role of alpha-hemolysin in cytokine production both in the murine UTI model as well as patient specimens. We conclude that E. coli utilizes alpha-hemolysin to inhibit epithelial cytokine production in vitro. Its contribution to inflammation during infection requires further study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Female sex hormones are known to regulate the adaptive and innate immune functions of the female reproductive tract. This review aims to update our current knowledge of the effects of the sex hormones estradiol and progesterone in the female reproductive tract on innate immunity, antigen presentation, specific immune responses, antibody secretion, genital tract infections caused by Chlamydia trachomatis, and vaccine-induced immunity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chlamydia trachomatis is the most prevalent bacterial sexually transmitted infection in the developed world and the leading cause of preventable blindness worldwide. As reported by the World Health Organization in 2001, there are approximately 92 million new infections detected annually, costing health systems billions of dollars to treat not only the acute infection, but also to treat infection-associated sequelae. The majority of genital infections are asymptomatic, with 50-70% going undetected. Genital tract infections can be easily treated with antibiotics when detected. Lack of treatment can lead to the development of pelvic inflammatory disease, ectopic pregnancies and tubal factor infertility in women and epididymitis and prostatitis in men. With infection rates on the continual rise and the large number of infections going undetected, there is a need to develop an efficacious vaccine which prevents not only infection, but also the development of infection-associated pathology. Before a vaccine can be developed and administered, the pathogenesis of chlamydial infections needs to be fully understood. This includes the kinetics of ascending infection and the effects of inoculating dose on ascension and development of pathology. The first aim in this study was to examine these factors in a murine model. Female BALB/c mice were infected intravaginally with varying doses of C. muridarum, the mouse variant of human C. trachomatis, and the ascension of infection along the reproductive tract and the time-course of infection-associated pathology development, including inflammatory cell infiltration, pyosalpinx and hydrosalpinx, were determined. It was found that while the inoculating dose did affect the rate and degree of infection, it did not affect any of the pathological parameters examined. This highlighted that the sexual transmission dose may have minimal effect on the development of reproductive sequelae. The results of the first section enabled further studies presented here to use an optimal inoculating dose that would ascend the reproductive tract and cause pathology development, so that vaccine efficacy could be determined. There has been a large amount of research into the development of an efficacious vaccine against genital tract chlamydial infections, with little success. However, there have been no studies examining the effects of the timing of vaccination, including the effects of vaccination during an active genital infection, or after clearance of a previous infection. These are important factors that need to be examined, as it is not yet known whether immunization will enhance not only the individual's immune response, but also pathology development. It is also unknown whether any enhancement of the immune responses will cause the Chlamydia to enter a dormant, persistent state, and possibly further enhance any pathology development. The second section of this study aimed to determine if vaccination during an active genital tract infection, or after clearance of a primary infection, enhanced the murine immune responses and whether any enhanced or reduced pathology occurred. Naïve, actively infected, or previously infected animals were immunized intranasally or transcutaneously with the adjuvants cholera toxin and CpG-ODN in combination with either the major outer membrane protein (MOMP) of C. muridarum, or MOMP and ribonucleotide reductase small chain protein (NrdB) of C. muridarum. It was found that the systemic immune responses in actively or previously infected mice were altered in comparison to animals immunized naïve with the same combinations, however mucosal antibodies were not enhanced. It was also found that there was no difference in pathology development between any of the groups. This suggests that immunization of individuals who may have an asymptomatic infection, or may have been previously exposed to a genital infection, may not benefit from vaccination in terms of enhanced immune responses against re-exposure. The final section of this study aimed to determine if the vaccination regimes mentioned above caused in vivo persistence of C. muridarum in the upper reproductive tracts of mice. As there has been no characterization of C. muridarum persistence in vitro, either ultrastructurally or via transcriptome analysis, this was the first aim of this section. Once it had been shown that C. muridarum could be induced into a persistent state, the gene transcriptional profiles of the selected persistent marker genes were used to determine if persistent infections were indeed present in the upper reproductive tracts of the mice. We found that intranasal immunization during an active infection induced persistent infections in the oviducts, but not the uterine horns, and that intranasal immunization after clearance of infection, caused persistent infections in both the uterine horns and the oviducts of the mice. This is a significant finding, not only because it is the first time that C. muridarum persistence has been characterized in vitro, but also due to the fact that there is minimal characterization of in vivo persistence of any chlamydial species. It is possible that the induction of persistent infections in the reproductive tract might enhance the development of pathology and thereby enhance the risk of infertility, factors that need to be prevented by vaccination, not enhanced. Overall, this study has shown that the inoculating dose does not affect pathology development in the female reproductive tract of infected mice, but does alter the degree and rate of ascending infection. It has also been shown that intranasal immunization during an active genital infection, or after clearance of one, induces persistent infections in the uterine horns and oviducts of mice. This suggests that potential vaccine candidates will need to have these factors closely examined before progressing to clinical trials. This is significant, because if the same situation occurs in humans, a vaccine administered to an asymptomatic, or previously exposed individual may not afford any extra protection and may in fact enhance the risk of development of infection-associated sequelae. This suggests that a vaccine may serve the community better if administered before the commencement of sexual activity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper was designed to study metabonomic characters of the hepatotoxicity induced by alcohol and the intervention effects of Yin Chen Hao Tang (YCHT), a classic traditional Chinese medicine formula for treatment of jaundice and liver disorders in China. Urinary samples from control, alcohol- and YCHT-treated rats were analyzed by ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry (UPLC/ESI-QTOF-MS) in positive ionization mode. The total ion chromatograms obtained from the control, alcohol- and YCHT-treated rats were easily distinguishable using a multivariate statistical analysis method such as the principal components analysis (PCA). The greatest difference in metabolic profiling was observed from alcohol-treated rats compared with the control and YCHT-treated rats. The positive ions m/z 664.3126 (9.00 min) was elevated in urine of alcohol-treated rats, whereas, ions m/z 155.3547 (10.96 min) and 708.2932 (9.01 min) were at a lower concentration compared with that in urine of control rats, however, these ions did not indicate a statistical difference between control rats and YCHT-treated rats. The ion m/z 664.3126 was found to correspond to ceramide (d18:1/25:0), providing further support for an involvement of the sphingomyelin signaling pathway in alcohol hepatotoxicity and the intervention effects of YCHT.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chlamydia pneumoniae commonly causes respiratory tract infections in children, and epidemiological investigations strongly link infection to the pathogenesis of asthma. The immune system in early life is immature and may not respond appropriately to pathogens. Toll-like receptor (TLR)2 and 4 are regarded as the primary pattern recognition receptors that sense bacteria, however their contribution to innate and adaptive immunity in early life remains poorly defined. We investigated the role of TLR2 and 4 in the induction of immune responses to Chlamydia muridarum respiratory infection, in neonatal wild-type (Wt) or TLR2-deficient (−/−), 4−/− or 2/4−/− BALB/c mice. Wt mice had moderate disease and infection. TLR2−/− mice had more severe disease and more intense and prolonged infection compared to other groups. TLR4−/− mice were asymptomatic. TLR2/4−/− mice had severe early disease and persistent infection, which resolved thereafter consistent with the absence of symptoms in TLR4−/− mice. Wt mice mounted robust innate and adaptive responses with an influx of natural killer (NK) cells, neutrophils, myeloid (mDCs) and plasmacytoid (pDCs) dendritic cells, and activated CD4+ and CD8+ T-cells into the lungs. Wt mice also had effective production of interferon (IFN)γ in the lymph nodes and lung, and proliferation of lymph node T-cells. TLR2−/− mice had more intense and persistent innate (particularly neutrophil) and adaptive cell responses and IL-17 expression in the lung, however IFNγ responses and T-cell proliferation were reduced. TLR2/4−/− mice had reduced innate and adaptive responses. Most importantly, neutrophil phagocytosis was impaired in the absence of TLR2. Thus, TLR2 expression, particularly on neutrophils, is required for effective control of Chlamydia respiratory infection in early life. Loss of control of infection leads to enhanced but ineffective TLR4-mediated inflammatory responses that prolong disease symptoms. This indicates that TLR2 agonists may be beneficial in the treatment of early life Chlamydia infections and associated diseases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mucosal adjuvants are important to overcome the state of immune tolerance normally associated with mucosal delivery and to enhance adaptive immunity to often-weakly immunogenic subunit vaccine antigens. Unfortunately, adverse side effects of many experimental adjuvants limit the number of adjuvants approved for vaccination. Lipid C is a novel, non-toxic, lipid oral vaccine-delivery formulation, developed originally for oral delivery of the live Mycobacterium bovis Bacille Calmette-Guerin (BCG) vaccine. In the present study, murine models of chlamydial respiratory and genital tract infections were used to determine whether transcutaneous immunization (TCI) with Lipid C-incorporated protein antigens could elicit protective immunity at the genital and respiratory mucosae. BALB/c mice were immunized transcutaneously with Lipid C containing the chlamydial major outer membrane protein (MOMP), with and without addition of cholera toxin and CpG-ODN 1826 (CT/CpG). Both vaccine combinations induced mixed cell-mediated and mucosal antibody immune responses. Immunization with Lipid C-incorporated MOMP (Lipid C/MOMP), either alone or with CT/CpG resulted in partial protection following live challenge with Chlamydia muridarum as evidenced by a significant reduction in recoverable Chlamydia from both the genital secretions and lung tissue. Protection induced by immunization with Lipid C/MOMP alone was not further enhanced by the addition of CT/CpG. These results highlight the potential of Lipid C as a novel mucosal adjuvant capable of targeting multiple mucosal surfaces following TCI. Protection at both the respiratory and genital mucosae was achieved without the requirement for potentially toxic adjuvants, suggesting that Lipid C may provide a safe effective mucosal adjuvant for human vaccination.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Escherichia coli ST131 is now recognised as a leading contributor to urinary tract and bloodstream infections in both community and clinical settings. Here we present the complete, annotated genome of E. coli EC958, which was isolated from the urine of a patient presenting with a urinary tract infection in the Northwest region of England and represents the most well characterised ST131 strain. Sequencing was carried out using the Pacific Biosciences platform, which provided sufficient depth and read-length to produce a complete genome without the need for other technologies. The discovery of spurious contigs within the assembly that correspond to site-specific inversions in the tail fibre regions of prophages demonstrates the potential for this technology to reveal dynamic evolutionary mechanisms. E. coli EC958 belongs to the major subgroup of ST131 strains that produce the CTX-M-15 extended spectrum β-lactamase, are fluoroquinolone resistant and encode the fimH30 type 1 fimbrial adhesin. This subgroup includes the Indian strain NA114 and the North American strain JJ1886. A comparison of the genomes of EC958, JJ1886 and NA114 revealed that differences in the arrangement of genomic islands, prophages and other repetitive elements in the NA114 genome are not biologically relevant and are due to misassembly. The availability of a high quality uropathogenic E. coli ST131 genome provides a reference for understanding this multidrug resistant pathogen and will facilitate novel functional, comparative and clinical studies of the E. coli ST131 clonal lineage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Urinary tract infection (UTI) is one of the most common bacterial infections in humans, with uropathogenic Escherichia coli (UPEC) the leading causative organism. UPEC has a number of virulence factors that enable it to overcome host defenses within the urinary tract and establish infection. The O antigen and the capsular polysaccharide are two such factors that provide a survival advantage to UPEC. Here we describe the application of the rpsL counter selection system to construct capsule (kpsD) and O antigen (waaL) mutants and complemented derivatives of three reference UPEC strains: CFT073 (O6:K2:H1), RS218 (O18:K1:H7) and 1177 (O1:K1:H7). We observed that while the O1, O6 and O18 antigens were required for survival in human serum, the role of the capsule was less clear and linked to O antigen type. In contrast, both the K1 and K2 capsular antigens provided a survival advantage to UPEC in whole blood. In the mouse urinary tract, mutation of the O6 antigen significantly attenuated CFT073 bladder colonization. Overall, this study contrasts the role of capsule and O antigen in three common UPEC serotypes using defined mutant and complemented strains. The combined mutagenesis-complementation strategy can be applied to study other virulence factors with complex functions both in vitro and in vivo.