36 resultados para Uranium dioxide.
Resumo:
We propose a productivity index for undesirable outputs such as carbon dioxide (CO2) and sulfur dioxide (SO2) emissions and measure it using data from 51 developed and developing countries over the period 1971-2000. About half of the countries exhibit the productivity growth. The changes in the productivity index are linked with their respective per capita income using a semi-parametric model. Our results show technological catch up of low-income countries. However, overall productivities both of SO2 and CO2 show somewhat different results.
Resumo:
The US Clean Air Act Amendments introduce an emissions trading system to regulate SO2 emissions. This study finds that changes in SO2 emissions prices are related to innovations induced by these amendments. We find that electricity-generating plants are able to increase electricity output and reduce emissions of SO2 and NOx from 1995 to 2007 due to the introduction of the allowance trading system. However, compared to the approximate 8% per year of exogenous technological progress, the induced effect is relatively small, and the contribution of the induced effect to overall technological progress is about 1-2%.
Resumo:
Carbon dioxide (CO2) is considered the most harmful of the greenhouse gases. Despite policy efforts, transport is the only sector experiencing an increase in the level of CO2 emissions and thereby possesses a major threat to sustainable development. In contrast, a reduced level of mobility has been associated with an increasing risk of being socially excluded. However, despite being the two key elements in transport policy, little effort has so far been made to investigate the links between CO2 emissions and social exclusion. This research contributes to this gap by analysing data from 157 weekly activity-travel diaries collected in rural Northern Ireland. CO2 emission levels were calculated using average speed models for different modes of transport. Regression analyses were then conducted to identify the socio-spatial patterns associated with these CO2 emissions, mode choice behaviour, and patterns of participation in activities. This research found that despite emitting a higher level of carbon dioxide, groups in rural areas possess the risk of being socially excluded due to their higher levels of mobility.
Resumo:
The electronic and optical properties of anatase titanium dioxide (TiO2), co-doped by nitrogen (N) and lithium (Li), have been investigated by density functional theory plus Hubbard correction term U, namely DFT+U. It is found that Li-dopants can effectively balance the net charges brought by N-dopants and shift the local state to the top of valence band. Depending on the distribution of dopants, the adsorption edges of TiO2 may be red- or blue-shifted, being consistent with recent experimental observations.
Resumo:
This paper investigates the short-run effects of economic growth on carbon dioxide emissions from the combustion of fossil fuels and the manufacture of cement for 189 countries over the period 1961-2010. Contrary to what has previously been reported, we conclude that there is no strong evidence that the emissions-income elasticity is larger during individual years of economic expansion as compared to recession. Significant evidence of asymmetry emerges when effects over longer periods are considered. We find that economic growth tends to increase emissions not only in the same year, but also in subsequent years. Delayed effects - especially noticeable in the road transport sector - mean that emissions tend to grow more quickly after booms and more slowly after recessions. Emissions are more sensitive to fluctuations in industrial value added than agricultural value added, with services being an intermediate case. On the expenditure side, growth in consumption and growth in investment have similar implications for national emissions. External shocks have a relatively large emissions impact, and the short-run emissions-income elasticity does not appear to decline as incomes increase. Economic growth and emissions have been more tightly linked in fossil-fuel rich countries.
Resumo:
Reducing carbon dioxide (CO2) to hydrocarbon fuel with solar energy is significant for high-density solar energy storage and carbon balance. In this work, single palladium/platinum (Pd/Pt) atoms supported on graphitic carbon nitride (g-C3N4), i.e. Pd/g-C3N4 and Pt/g-C3N4, acting as photocatalysts for CO2 reduction were investigated by density function theory (DFT) calcu-lations for the first time. During CO2 reduction, the individual metal atoms function as the active sites, while g-C3N4 provides the source of hydrogen (H*) from hydrogen evolution reaction. The complete, as-designed photocatalysts exhibit excellent activity in CO2 reduction. HCOOH is the preferred product of CO2 reduction on the Pd/g-C3N4 catalyst with a rate-determining barrier of 0.66 eV, while the Pt/g-C3N4 catalyst prefers to reduce CO2 to CH4 with a rate-determining barrier of 1.16 eV. In addition, depositing atom catalysts on g-C3N4 significantly enhances the visible light absorption, rendering them ideal for visible light reduction of CO2. Our findings open a new avenue of CO2 reduction for renewable energy supply.