173 resultados para UAV Platform
Resumo:
The behaviour of cells cultured within three-dimensional (3D) structures rather than onto two-dimensional (2D) culture plastic more closely reflects their in vivo responses. Consequently, 3D culture systems are becoming crucial scientific tools in cancer cell research. We used a novel 3D culture concept to assess cell-matrix interactions implicated in carcinogenesis: a synthetic hydrogel matrix equipped with key biomimetic features, namely incorporated cell integrin-binding motifs (e.g. RGD peptides) and the ability of being degraded by cell-secreted proteases (e.g. matrix metalloproteases). As a cell model, we chose epithelial ovarian cancer, an aggressive disease typically diagnosed at an advanced stage when chemoresistance occurs. Both cell lines used (OV-MZ-6, SKOV-3) proliferated similarly in 2D, but not in 3D. Spheroid formation was observed exclusively in 3D when cells were embedded within hydrogels. By exploiting the design flexibility of the hydrogel characteristics, we showed that proliferation in 3D was dependent on cell-integrin engagement and the ability of cells to proteolytically remodel their extracellular microenvironment. Higher survival rates after exposure to the anti-cancer drug paclitaxel were observed in cell spheroids grown in hydrogels (40-60%) compared to cell monolayers in 2D (20%). Thus, 2D evaluation of chemosensitivity may not reflect pathophysiological events seen in patients. Because of the design flexibility of their characteristics and their stability in long-term cultures (28 days), these biomimetic hydrogels represent alternative culture systems for the increasing demand in cancer research for more versatile, physiologically relevant and reproducible 3D matrices.
Resumo:
The development of locally-based healthcare initiatives, such as community health coalitions that focus on capacity building programs and multi-faceted responses to long-term health problems, have become an increasingly important part of the public health landscape. As a result of their complexity and the level of investment, it has become necessary to develop innovative ways to help manage these new healthcare approaches. Geographical Information Systems (GIS) have been suggested as one of the innovative approaches that will allow community health coalitions to better manage and plan their activities. The focus of this paper is to provide a commentary on the use of GIS as a tool for community coalitions and discuss some of the potential benefits and issues surrounding the development of these tools.
Resumo:
The main objective of this paper is to detail the development of a feasible hardware design based on Evolutionary Algorithms (EAs) to determine flight path planning for Unmanned Aerial Vehicles (UAVs) navigating terrain with obstacle boundaries. The design architecture includes the hardware implementation of Light Detection And Ranging (LiDAR) terrain and EA population memories within the hardware, as well as the EA search and evaluation algorithms used in the optimizing stage of path planning. A synthesisable Very-high-speed integrated circuit Hardware Description Language (VHDL) implementation of the design was developed, for realisation on a Field Programmable Gate Array (FPGA) platform. Simulation results show significant speedup compared with an equivalent software implementation written in C++, suggesting that the present approach is well suited for UAV real-time path planning applications.
Resumo:
We aim to demonstrate unaided visual 3D pose estimation and map reconstruction using both monocular and stereo vision techniques. To date, our work has focused on collecting data from Unmanned Aerial Vehicles, which generates a number of significant issues specific to the application. Such issues include scene reconstruction degeneracy from planar data, poor structure initialisation for monocular schemes and difficult 3D reconstruction due to high feature covariance. Most modern Visual Odometry (VO) and related SLAM systems make use of a number of sensors to inform pose and map generation, including laser range-finders, radar, inertial units and vision [1]. By fusing sensor inputs, the advantages and deficiencies of each sensor type can be handled in an efficient manner. However, many of these sensors are costly and each adds to the complexity of such robotic systems. With continual advances in the abilities, small size, passivity and low cost of visual sensors along with the dense, information rich data that they provide our research focuses on the use of unaided vision to generate pose estimates and maps from robotic platforms. We propose that highly accurate (�5cm) dense 3D reconstructions of large scale environments can be obtained in addition to the localisation of the platform described in other work [2]. Using images taken from cameras, our algorithm simultaneously generates an initial visual odometry estimate and scene reconstruction from visible features, then passes this estimate to a bundle-adjustment routine to optimise the solution. From this optimised scene structure and the original images, we aim to create a detailed, textured reconstruction of the scene. By applying such techniques to a unique airborne scenario, we hope to expose new robotic applications of SLAM techniques. The ability to obtain highly accurate 3D measurements of an environment at a low cost is critical in a number of agricultural and urban monitoring situations. We focus on cameras as such sensors are small, cheap and light-weight and can therefore be deployed in smaller aerial vehicles. This, coupled with the ability of small aerial vehicles to fly near to the ground in a controlled fashion, will assist in increasing the effective resolution of the reconstructed maps.
Resumo:
Mobile sensor platforms such as Autonomous Underwater Vehicles (AUVs) and robotic surface vessels, combined with static moored sensors compose a diverse sensor network that is able to provide macroscopic environmental analysis tool for ocean researchers. Working as a cohesive networked unit, the static buoys are always online, and provide insight as to the time and locations where a federated, mobile robot team should be deployed to effectively perform large scale spatiotemporal sampling on demand. Such a system can provide pertinent in situ measurements to marine biologists whom can then advise policy makers on critical environmental issues. This poster presents recent field deployment activity of AUVs demonstrating the effectiveness of our embedded communication network infrastructure throughout southern California coastal waters. We also report on progress towards real-time, web-streaming data from the multiple sampling locations and mobile sensor platforms. Static monitoring sites included in this presentation detail the network nodes positioned at Redondo Beach and Marina Del Ray. One of the deployed mobile sensors highlighted here are autonomous Slocum gliders. These nodes operate in the open ocean for periods as long as one month. The gliders are connected to the network via a Freewave radio modem network composed of multiple coastal base-stations. This increases the efficiency of deployment missions by reducing operational expenses via reduced reliability on satellite phones for communication, as well as increasing the rate and amount of data that can be transferred. Another mobile sensor platform presented in this study are the autonomous robotic boats. These platforms are utilized for harbor and littoral zone studies, and are capable of performing multi-robot coordination while observing known communication constraints. All of these pieces fit together to present an overview of ongoing collaborative work to develop an autonomous, region-wide, coastal environmental observation and monitoring sensor network.
Resumo:
Autonomous mini-helicopters have been seen as a viable option for aerial-based powerline inspections, however there are numerous research and engineering challenges in developing a system capable of achieving this task in a dependable manner. We have developed an autonomous helicopter as a research platform which will allow us to demonstrate proof-of-concept capabilities for powerline inspections. Through numerous development cycles and from flight test experience we have gained insights into the key challenges in this area. We discuss these insights, describe the helicopter platform and present our research progress in the area of obstacle avoidance for mini-helicopters.
Resumo:
The common approach to estimate bus dwell time at a BRT station is to apply the traditional dwell time methodology derived for suburban bus stops. In spite of being sensitive to boarding and alighting passenger numbers and to some extent towards fare collection media, these traditional dwell time models do not account for the platform crowding. Moreover, they fall short in accounting for the effects of passenger/s walking along a relatively longer BRT platform. Using the experience from Brisbane busway (BRT) stations, a new variable, Bus Lost Time (LT), is introduced in traditional dwell time model. The bus lost time variable captures the impact of passenger walking and platform crowding on bus dwell time. These are two characteristics which differentiate a BRT station from a bus stop. This paper reports the development of a methodology to estimate bus lost time experienced by buses at a BRT platform. Results were compared with the Transit Capacity and Quality of Servce Manual (TCQSM) approach of dwell time and station capacity estimation. When the bus lost time was used in dwell time calculations it was found that the BRT station platform capacity reduced by 10.1%.
Resumo:
The common approach to estimate bus dwell time at a BRT station platform is to apply the traditional dwell time methodology derived for suburban bus stops. Current dwell time models are sensitive towards bus type, fare collection policy along with the number of boarding and alighting passengers. However, they fall short in accounting for the effects of passenger/s walking on a relatively longer BRT station platform. Analysis presented in this paper shows that the average walking time of a passenger at BRT platform is 10 times more than that of bus stop. The requirement of walking to the bus entry door at the BRT station platform may lead to the bus experiencing a higher dwell time. This paper presents a theory for a BRT network which explains the loss of station capacity during peak period operation. It also highlights shortcomings of present available bus dwell time models suggested for the analysis of BRT operation.
Resumo:
The journalism revolution is upon us. In a world where we are constantly being told that everyone can be a publisher and challenges are emerging from bloggers, Twitterers and podcasters, journalism educators are inevitably reassessing what skills we now need to teach to keep our graduates ahead of the game. QUT this year tackled that question head-on as a curriculum review and program restructure resulted in a greater emphasis on online journalism. The author spent a week in the online newsrooms of each of two of the major players – ABC online news and thecouriermail.com to watch, listen and interview some of the key players. This, in addition to interviews with industry leaders from Fairfax and news.com, lead to the conclusion that while there are some new skills involved in new media much of what the industry is demanding is in fact good old fashioned journalism. Themes of good spelling, grammar, accuracy and writing skills and a nose for news recurred when industry players were asked what it was that they would like to see in new graduates. While speed was cited as one of the big attributes needed in online journalism, the conclusion of many of the players was that the skills of a good down-table sub or a journalist working for wire service were not unlike those most used in online newsrooms.
Resumo:
Bus Rapid Transit (BRT), because of its operational flexibility and simplicity, is rapidly gaining popularity with urban designers and transit planners. Earlier BRTs were bus shared lane or bus only lane, which share the roadway with general and other forms of traffic. In recent time, more sophisticated designs of BRT have emerged, such as busway, which has separate carriageway for buses and provides very high physical separation of buses from general traffic. Line capacities of a busway are predominately dependent on bus capacity of its stations. Despite new developments in BRT designs, the methodology of capacity analysis is still based on traditional principles of kerbside bus stop on bus only lane operations. Consequently, the tradition methodology lacks accounting for various dimensions of busway station operation, such as passenger crowd, passenger walking and bus lost time along the long busway station platform. This research has developed a purpose made bus capacity analysis methodology for busway station analysis. Extensive observations of kerbside bus stops and busway stations in Brisbane, Australia were made and differences in their operation were studied. A large scale data collection was conducted using the video recording technique at the Mater Hill Busway Station on the South East Busway in Brisbane. This research identified new parameters concerning busway station operation, and through intricate analysis identified the elements and processes which influence the bus dwell time at a busway station platform. A new variable, Bus lost time, was defined and its quantitative descriptions were established. Based on these finding and analysis, a busway station platform bus capacity methodology was developed, comprising of new models for busway station lost time, busway station dwell time, busway station loading area bus capacity, and busway station platform bus capacity. The new methodology not only accounts for passenger boarding and alighting, but also covers platform crowd and bus lost time in station platform bus capacity estimation. The applicability of this methodology was shown through demonstrative examples. Additionally, these examples illustrated the significance of the bus lost time variable in determining station capacities.
Resumo:
A forced landing is an unscheduled event in flight requiring an emergency landing, and is most commonly attributed to engine failure, failure of avionics or adverse weather. Since the ability to conduct a successful forced landing is the primary indicator for safety in the aviation industry, automating this capability for unmanned aerial vehicles (UAVs) will help facilitate their integration into, and subsequent routine operations over civilian airspace. Currently, there is no commercial system available to perform this task; however, a team at the Australian Research Centre for Aerospace Automation (ARCAA) is working towards developing such an automated forced landing system. This system, codenamed Flight Guardian, will operate onboard the aircraft and use machine vision for site identification, artificial intelligence for data assessment and evaluation, and path planning, guidance and control techniques to actualize the landing. This thesis focuses on research specific to the third category, and presents the design, testing and evaluation of a Trajectory Generation and Guidance System (TGGS) that navigates the aircraft to land at a chosen site, following an engine failure. Firstly, two algorithms are developed that adapts manned aircraft forced landing techniques to suit the UAV planning problem. Algorithm 1 allows the UAV to select a route (from a library) based on a fixed glide range and the ambient wind conditions, while Algorithm 2 uses a series of adjustable waypoints to cater for changing winds. A comparison of both algorithms in over 200 simulated forced landings found that using Algorithm 2, twice as many landings were within the designated area, with an average lateral miss distance of 200 m at the aimpoint. These results present a baseline for further refinements to the planning algorithms. A significant contribution is seen in the design of the 3-D Dubins Curves planning algorithm, which extends the elementary concepts underlying 2-D Dubins paths to account for powerless flight in three dimensions. This has also resulted in the development of new methods in testing for path traversability, in losing excess altitude, and in the actual path formation to ensure aircraft stability. Simulations using this algorithm have demonstrated lateral and vertical miss distances of under 20 m at the approach point, in wind speeds of up to 9 m/s. This is greater than a tenfold improvement on Algorithm 2 and emulates the performance of manned, powered aircraft. The lateral guidance algorithm originally developed by Park, Deyst, and How (2007) is enhanced to include wind information in the guidance logic. A simple assumption is also made that reduces the complexity of the algorithm in following a circular path, yet without sacrificing performance. Finally, a specific method of supplying the correct turning direction is also used. Simulations have shown that this new algorithm, named the Enhanced Nonlinear Guidance (ENG) algorithm, performs much better in changing winds, with cross-track errors at the approach point within 2 m, compared to over 10 m using Park's algorithm. A fourth contribution is made in designing the Flight Path Following Guidance (FPFG) algorithm, which uses path angle calculations and the MacCready theory to determine the optimal speed to fly in winds. This algorithm also uses proportional integral- derivative (PID) gain schedules to finely tune the tracking accuracies, and has demonstrated in simulation vertical miss distances of under 2 m in changing winds. A fifth contribution is made in designing the Modified Proportional Navigation (MPN) algorithm, which uses principles from proportional navigation and the ENG algorithm, as well as methods specifically its own, to calculate the required pitch to fly. This algorithm is robust to wind changes, and is easily adaptable to any aircraft type. Tracking accuracies obtained with this algorithm are also comparable to those obtained using the FPFG algorithm. For all three preceding guidance algorithms, a novel method utilising the geometric and time relationship between aircraft and path is also employed to ensure that the aircraft is still able to track the desired path to completion in strong winds, while remaining stabilised. Finally, a derived contribution is made in modifying the 3-D Dubins Curves algorithm to suit helicopter flight dynamics. This modification allows a helicopter to autonomously track both stationary and moving targets in flight, and is highly advantageous for applications such as traffic surveillance, police pursuit, security or payload delivery. Each of these achievements serves to enhance the on-board autonomy and safety of a UAV, which in turn will help facilitate the integration of UAVs into civilian airspace for a wider appreciation of the good that they can provide. The automated UAV forced landing planning and guidance strategies presented in this thesis will allow the progression of this technology from the design and developmental stages, through to a prototype system that can demonstrate its effectiveness to the UAV research and operations community.
Resumo:
This paper presents a practical framework to synthesize multi-sensor navigation information for localization of a rotary-wing unmanned aerial vehicle (RUAV) and estimation of unknown ship positions when the RUAV approaches the landing deck. The estimation performance of the visual tracking sensor can also be improved through integrated navigation. Three different sensors (inertial navigation, Global Positioning System, and visual tracking sensor) are utilized complementarily to perform the navigation tasks for the purpose of an automatic landing. An extended Kalman filter (EKF) is developed to fuse data from various navigation sensors to provide the reliable navigation information. The performance of the fusion algorithm has been evaluated using real ship motion data. Simulation results suggest that the proposed method can be used to construct a practical navigation system for a UAV-ship landing system.
Resumo:
For people with intellectual disabilities there are significant barriers to inclusion in socially cooperative endeavours. This paper investigates the effectiveness of Stomp, a tangible user interface (TUI) designed to provide new participatory experiences for people with intellectual disability. Results from an observational study reveal the extent to which the Stomp system supports social and physical interaction. The tangible, spatial and embodied qualities of Stomp result in an experience that does not rely on the acquisition of specific competencies before interaction and engagement can occur.
Resumo:
In this paper, a hardware-based path planning architecture for unmanned aerial vehicle (UAV) adaptation is proposed. The architecture aims to provide UAVs with higher autonomy using an application specific evolutionary algorithm (EA) implemented entirely on a field programmable gate array (FPGA) chip. The physical attributes of an FPGA chip, being compact in size and low in power consumption, compliments it to be an ideal platform for UAV applications. The design, which is implemented entirely in hardware, consists of EA modules, population storage resources, and three-dimensional terrain information necessary to the path planning process, subject to constraints accounted for separately via UAV, environment and mission profiles. The architecture has been successfully synthesised for a target Xilinx Virtex-4 FPGA platform with 32% logic slices utilisation. Results obtained from case studies for a small UAV helicopter with environment derived from LIDAR (Light Detection and Ranging) data verify the effectiveness of the proposed FPGA-based path planner, and demonstrate convergence at rates above the typical 10 Hz update frequency of an autopilot system.