220 resultados para Time varying control systems
Resumo:
Time-varying bispectra, computed using a classical sliding window short-time Fourier approach, are analyzed for scalp EEG potentials evoked by an auditory stimulus and new observations are presented. A single, short duration tone is presented from the left or the right, direction unknown to the test subject. The subject responds by moving the eyes to the direction of the sound. EEG epochs sampled at 200 Hz for repeated trials are processed between -70 ms and +1200 ms with reference to the stimulus. It is observed that for an ensemble of correctly recognized cases, the best matching timevarying bispectra at (8 Hz, 8Hz) are for PZ-FZ channels and this is also largely the case for grand averages but not for power spectra at 8 Hz. Out of 11 subjects, the only exception for time-varying bispectral match was a subject with family history of Alzheimer’s disease and the difference was in bicoherence, not biphase.
Resumo:
Theoretical foundations of higher order spectral analysis are revisited to examine the use of time-varying bicoherence on non-stationary signals using a classical short-time Fourier approach. A methodology is developed to apply this to evoked EEG responses where a stimulus-locked time reference is available. Short-time windowed ensembles of the response at the same offset from the reference are considered as ergodic cyclostationary processes within a non-stationary random process. Bicoherence can be estimated reliably with known levels at which it is significantly different from zero and can be tracked as a function of offset from the stimulus. When this methodology is applied to multi-channel EEG, it is possible to obtain information about phase synchronization at different regions of the brain as the neural response develops. The methodology is applied to analyze evoked EEG response to flash visual stimulii to the left and right eye separately. The EEG electrode array is segmented based on bicoherence evolution with time using the mean absolute difference as a measure of dissimilarity. Segment maps confirm the importance of the occipital region in visual processing and demonstrate a link between the frontal and occipital regions during the response. Maps are constructed using bicoherence at bifrequencies that include the alpha band frequency of 8Hz as well as 4 and 20Hz. Differences are observed between responses from the left eye and the right eye, and also between subjects. The methodology shows potential as a neurological functional imaging technique that can be further developed for diagnosis and monitoring using scalp EEG which is less invasive and less expensive than magnetic resonance imaging.
Resumo:
Several approaches have been introduced in the literature for active noise control (ANC) systems. Since the filtered-x least-mean-square (FxLMS) algorithm appears to be the best choice as a controller filter, researchers tend to improve performance of ANC systems by enhancing and modifying this algorithm. This paper proposes a new version of the FxLMS algorithm, as a first novelty. In many ANC applications, an on-line secondary path modeling method using white noise as a training signal is required to ensure convergence of the system. As a second novelty, this paper proposes a new approach for on-line secondary path modeling on the basis of a new variable-step-size (VSS) LMS algorithm in feed forward ANC systems. The proposed algorithm is designed so that the noise injection is stopped at the optimum point when the modeling accuracy is sufficient. In this approach, a sudden change in the secondary path during operation makes the algorithm reactivate injection of the white noise to re-adjust the secondary path estimate. Comparative simulation results shown in this paper indicate the effectiveness of the proposed approach in reducing both narrow-band and broad-band noise. In addition, the proposed ANC system is robust against sudden changes of the secondary path model.
Resumo:
Several approaches have been introduced in literature for active noise control (ANC) systems. Since FxLMS algorithm appears to be the best choice as a controller filter, researchers tend to improve performance of ANC systems by enhancing and modifying this algorithm. This paper proposes a new version of FxLMS algorithm. In many ANC applications an online secondary path modelling method using a white noise as a training signal is required to ensure convergence of the system. This paper also proposes a new approach for online secondary path modelling in feedfoward ANC systems. The proposed algorithm stops injection of the white noise at the optimum point and reactivate the injection during the operation, if needed, to maintain performance of the system. Benefiting new version of FxLMS algorithm and not continually injection of white noise makes the system more desirable and improves the noise attenuation performance. Comparative simulation results indicate effectiveness of the proposed approach.
Resumo:
An online secondary path modelling method using a white noise as a training signal is required in many applications of active noise control (ANC) to ensure convergence of the system. Not continually injection of white noise during system operation makes the system more desirable. The purposes of the proposed method are two folds: controlling white noise by preventing continually injection, and benefiting white noise with a larger variance. The modelling accuracy and the convergence rate increase when a white noise with larger variance is used, however larger the variance increases the residual noise, which decreases performance of the system. This paper proposes a new approach for online secondary path modelling in feedfoward ANC systems. The proposed algorithm uses the advantages of the white noise with larger variance to model the secondary path, but the injection is stopped at the optimum point to increase performance of the system. Comparative simulation results shown in this paper indicate effectiveness of the proposed approach in controlling active noise.
Resumo:
In many applications of active noise control (ANC), an online secondary path modelling method using a white noise as a training signal is required to ensure convergence of the system. The modelling accuracy and the convergence rate increase when a white noise with larger variance is used, however larger the variance increases the residual noise, which decreases performance of the system. The proposed algorithm uses the advantages of the white noise with larger variance to model the secondary path, but the injection is stopped at the optimum point to increase performance of the system. In this approach, instead of continuous injection of the white noise, a sudden change in secondary path during the operation makes the algorithm to reactivate injection of the white noise to adjust the secondary path estimation. Comparative simulation results shown in this paper indicate effectiveness of the proposed method.
Resumo:
We advocate for the use of predictive techniques in interactive computer music systems. We suggest that the inclusion of prediction can assist in the design of proactive rather than reactive computational performance partners. We summarize the significant role prediction plays in human musical decisions, and the only modest use of prediction in interactive music systems to date. After describing how we are working toward employing predictive processes in our own metacreation software we reflect on future extensions to these approaches.
Resumo:
The Marine Systems Simulator (MSS) is an environment which provides the necessary resources for rapid implementation of mathematical models of marine systems with focus on control system design. The simulator targets models¡Xand provides examples ready to simulate¡Xof different floating structures and its systems performing various operations. The platform adopted for the development of MSS is Matlab/Simulink. This allows a modular simulator structure, and the possibility of distributed development. Openness and modularity of software components have been the prioritized design principles, which enables a systematic reuse of knowledge and results in efficient tools for research and education. This paper provides an overview of the structure of the MSS, its features, current accessability, and plans for future development.
Resumo:
As Unmanned Aircraft Systems (UAS) grow in complexity, and their level of autonomy increases|moving away from the concept of a remotely piloted systems and more towards autonomous systems|there is a need to further improve reliability and tolerance to faults. The traditional way to accommodate actuator faults is by using standard control allocation techniques as part of the flight control system. The allocation problem in the presence of faults often requires adding constraints that quantify the maximum capacity of the actuators. This in turn requires on-line numerical optimisation. In this paper, we propose a framework for joint allocation and constrained control scheme via vector input scaling. The actuator configuration is used to map actuator constraints into the space of the aircraft generalised forces, which are the magnitudes demanded by the light controller. Then by constraining the output of controller, we ensure that the allocation function always receive feasible demands. With the proposed framework, the allocation problem does not require numerical optimisation, and since the controller handles the constraints, there is not need to implement heuristics to inform the controller about actuator saturation.
Resumo:
The validity of fatigue protocols involving multi-joint movements, such as stepping, has yet to be clearly defined. Although surface electromyography can monitor the fatigue state of individual muscles, the effects of joint angle and velocity variation on signal parameters are well established. Therefore, the aims of this study were to i) describe sagittal hip and knee kinematics during repetitive stepping ii) identify periods of high inter-trial variability and iii) determine within-test reliability of hip and knee kinematic profiles. A group of healthy men (N = 15) ascended and descended from a knee-high platform wearing a weighted vest (10%BW) for 50 consecutive trials. The hip and knee underwent rapid flexion and extension during step ascent and descent. Variability of hip and knee velocity peaked between 20-40% of the ascent phase and 80-100% of the descent. Significant (p<0.05) reductions in joint range of motion and peak velocity during step ascent were observed, while peak flexion velocity increased during descent. Healthy individuals use complex hip and knee motion to negotiate a knee-high step with kinematic patterns varying across multiple repetitions. These findings have important implications for future studies intending to use repetitive stepping as a fatigue model for the knee extensors and flexors.
Resumo:
For timely processing of the crop, sugar factories need boiler stations that can reliably produce steam when fired with fuel of variable quality. The control systems installed on most sugar factory boilers have changed little in the last thirty years and in some cases the default control system response to changes in fuel and/or fuel quality is not correct and operator intervention is required to prevent factory stoppages or reductions in crushing rate caused by poor combustion. Some factories have recently modified their boiler control systems for improved combustion performance and reduced maintenance costs. This paper describes testing carried out to evaluate some of these control system modifications and identifies boiler control system changes that can be applied more widely in the sugar industry.
Resumo:
This paper provides a three-layered framework to monitor the positioning performance requirements of Real-time Relative Positioning (RRP) systems of the Cooperative Intelligent Transport Systems (C-ITS) that support Cooperative Collision Warning (CCW) applications. These applications exploit state data of surrounding vehicles obtained solely from the Global Positioning System (GPS) and Dedicated Short-Range Communications (DSRC) units without using other sensors. To this end, the paper argues the need for the GPS/DSRC-based RRP systems to have an autonomous monitoring mechanism, since the operation of CCW applications is meant to augment safety on roads. The advantages of autonomous integrity monitoring are essential and integral to any safety-of-life system. The autonomous integrity monitoring framework proposed necessitates the RRP systems to detect/predict the unavailability of their sub-systems and of the integrity monitoring module itself, and, if available, to account for effects of data link delays and breakages of DSRC links, as well as of faulty measurement sources of GPS and/or integrated augmentation positioning systems, before the information used for safety warnings/alarms becomes unavailable, unreliable, inaccurate or misleading. Hence, a monitoring framework using a tight integration and correlation approach is proposed for instantaneous reliability assessment of the RRP systems. Ultimately, using the proposed framework, the RRP systems will provide timely alerts to users when the RRP solutions cannot be trusted or used for the intended operation.
Resumo:
This paper presents an extension to the Rapidly-exploring Random Tree (RRT) algorithm applied to autonomous, drifting underwater vehicles. The proposed algorithm is able to plan paths that guarantee convergence in the presence of time-varying ocean dynamics. The method utilizes 4-Dimensional, ocean model prediction data as an evolving basis for expanding the tree from the start location to the goal. The performance of the proposed method is validated through Monte-Carlo simulations. Results illustrate the importance of the temporal variance in path execution, and demonstrate the convergence guarantee of the proposed methods.
Resumo:
Reconstructing 3D motion data is highly under-constrained due to several common sources of data loss during measurement, such as projection, occlusion, or miscorrespondence. We present a statistical model of 3D motion data, based on the Kronecker structure of the spatiotemporal covariance of natural motion, as a prior on 3D motion. This prior is expressed as a matrix normal distribution, composed of separable and compact row and column covariances. We relate the marginals of the distribution to the shape, trajectory, and shape-trajectory models of prior art. When the marginal shape distribution is not available from training data, we show how placing a hierarchical prior over shapes results in a convex MAP solution in terms of the trace-norm. The matrix normal distribution, fit to a single sequence, outperforms state-of-the-art methods at reconstructing 3D motion data in the presence of significant data loss, while providing covariance estimates of the imputed points.
Resumo:
This correspondence paper addresses the problem of output feedback stabilization of control systems in networked environments with quality-of-service (QoS) constraints. The problem is investigated in discrete-time state space using Lyapunov’s stability theory and the linear inequality matrix technique. A new discrete-time modeling approach is developed to describe a networked control system (NCS) with parameter uncertainties and nonideal network QoS. It integrates a network-induced delay, packet dropout, and other network behaviors into a unified framework. With this modeling, an improved stability condition, which is dependent on the lower and upper bounds of the equivalent network-induced delay, is established for the NCS with norm-bounded parameter uncertainties. It is further extended for the output feedback stabilization of the NCS with nonideal QoS. Numerical examples are given to demonstrate the main results of the theoretical development.