66 resultados para Thin Film
Resumo:
A new, solution-processable, low-bandgap, diketopyrrolopyrrole- benzothiadiazole-based, donor-acceptor polymer semiconductor (PDPP-TBT) is reported. This polymer exhibits ambipolar charge transport when used as a single component active semiconductor in OTFTs with balanced hole and electron mobilities of 0.35 cm2 V-1s-1 and 0.40 cm 2 V-1s-1, respectively. This polymer has the potential for ambipolar transistor-based complementary circuits in printed electronics.
Resumo:
We report here the synthesis, characterization, and organic thin-film transistor (OTFT) mobilities of 4,7-bis(5-(5-hexylthiophen-2-yl)thiophen-2-yl) benzo[1,2,5]thiadiazole (DH-BTZ-4T). DH-BTZ-4T was prepared in one high-yield step from commercially available materials using Suzuki chemistry and purified by column chromatography. OTFTs with hole mobilities of 0.17 cm2/(Vs) and on/off current ratios of 1 × 105 were prepared from DH-BTZ-4T active layers deposited by vacuum deposition. As DH-BTZ-4T is soluble in common solvents, solution processed devices were also prepared by spin coating yielding preliminary mobilities of 6.0 × 10-3 cm 2/(Vs). The promising mobilities and low band gap (1.90 eV) coupled with solution processability and ambient stability makes this material an excellent candidate for application in organic electronics.
Resumo:
A novel solution processable donor-acceptor (D-A) based low band gap polymer semiconductor poly{3,6-difuran-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4- c]pyrrole-1,4-dione-alt-thienylenevinylene} (PDPPF-TVT), was designed and synthesized by a Pd-catalyzed Stille coupling route. An electron deficient furan based diketopyrrolopyrrole (DPP) block and electron rich thienylenevinylene (TVT) donor moiety were attached alternately in the polymer backbone. The polymer exhibited good solubility, film forming ability and thermal stability. The polymer exhibits wide absorption bands from 400 nm to 950 nm (UV-vis-NIR region) with absorption maximum centered at 782 nm in thin film. The optical band gap (Eoptg) calculated from the polymer film absorption onset is around 1.37 eV. The π-energy band level (ionization potential) calculated by photoelectron spectroscopy in air (PESA) for PDPPF-TVT is around 5.22 eV. AFM and TEM analyses of the polymer reveal nodular terrace morphology with optimized crystallinity after 200 °C thermal annealing. This polymer exhibits p-channel charge transport characteristics when used as the active semiconductor in organic thin-film transistor (OTFT) devices. The highest hole mobility of 0.13 cm 2 V -1 s -1 is achieved in bottom gate and top-contact OTFT devices with on/off ratios in the range of 10 6-10 7. This work reveals that the replacement of thiophene by furan in DPP copolymers exhibits such a high mobility, which makes DPP furan a promising block for making a wide range of promising polymer semiconductors for broad applications in organic electronics.
Resumo:
Thin film nanostructured gas sensors typically operate at temperatures above 400°C, but lower temperature operation is highly desirable, especially for remote area field sensing as this reduces significantly power consumption. We have investigated a range of sensor materials based on both pure and doped tungsten oxide (mainly focusing on Fe-doping), deposited using both thermal evaporation and electron-beam evaporation, and using a variety of post-deposition annealing. The films show excellent sensitivity at operating temperatures as low as 150°C for detection of NO2. There is a definite relationship between the sensitivity and the crystallinity and nanostructure obtained through the deposition and heat treatment processes, as well as variations in the conductivity caused both by doping and heat treatmetn. The ultimate goal of this work is to control the sensing properties, including selectivity to specific gases through the engineering of the electronic properties and the nanostructure of the films.
Resumo:
We fabricated high performance supercapacitors by using all carbon electrodes, with volume energy in the order of 10−3 Whcm−3, comparable to Li-ion batteries, and power densities in the range of 10 Wcm−3, better than laser-scribed-graphene supercapacitors. All-carbon supercapacitor electrodes are made by solution processing and filtering electrochemically-exfoliated graphene sheets mixed with clusters of spontaneously entangled multiwall carbon nanotubes. We maximize the capacitance by using a 1:1 weight ratio of graphene to multi-wall carbon nanotubes and by controlling their packing in the electrode film so as to maximize accessible surface and further enhance the charge collection. This electrode is transferred onto a plastic-paper-supported double-wall carbon nanotube film used as current collector. These all-carbon thin films are combined with plastic paper and gelled electrolyte to produce solid-state bendable thin film supercapacitors. We assembled supercapacitor cells in series in a planar configuration to increase the operating voltage and find that the shape of our supercapacitor film strongly affects its capacitance. An in-line superposition of rectangular sheets is superior to a cross superposition in maintaining high capacitance when subject to fast charge/discharge cycles. The effect is explained by addressing the mechanism of ion diffusion into stacked graphene sheets.
Resumo:
π-Conjugated polymers are the most promising semiconductor materials to enable printed organic thin film transistors (OTFTs) due to their excellent solution processability and mechanical robustness. However, solution-processed polymer semiconductors have shown poor charge transport properties mainly originated from the disordered polymer chain packing in the solid state as compared to the thermally evaporated small molecular organic semiconductors. The low charge carrier mobility, typically < 0.1 cm2 /V.s, of polymer semiconductors poses a challenge for most intended applications such as displays and radio-frequency identification (RFID) tags. Here we present our recent results on the dike topyrrolopyrrole (DPP)-based polymers and demonstrate that when DPP is combined with appropriate electron donating moieties such as thiophene and thienothiophene, very high charge carrier mobility values of ~1 cm2/V.s could be achieved.
Resumo:
Optical transmittance and conductivity for thin metallic films, such as Au, are two inversely related and extremely important parameters for its application in organic photovoltaics as the front electrode. We report our findings on how these parameters have been optimized to attain maximum possible efficiencies by fabricating organic solar cells with thin Au film anodes of differing optical transmittances and consequently due to scaling at the nanolevel, varying electrical conductivities. There was an extraordinary improvement in the overall solar cell efficiency (to the order of 49%) when the Au thin film transmittance was increased from 38% to 54%. Surface morphologies of these thin films also have an effect on the critical parameters including, Voc, Jsc and FF.
Resumo:
The interaction at the interface between a metal electrode and photoactive polymer is crucial for overall performance and stability of organic photovoltaics (OPVs). In this article, we report a comparative study of the stability of thin film Ag and indium tin oxide (ITO) as electrodes when used in conjunction with an interfacial PEDOT:PSS layer for P3HT:PCBM blend OPV devices. XPS measurements were taken for Ag and ITO/PEDOT:PSS layered samples with different exposure times to ambient conditions (∼25 °C, ∼50% relative humidity) to investigate the migration of Ag and In into the PEDOT:PSS layer. The change in efficiency of OPVs with a longer exposure time and degree of migration is explained by the analysis of XPS results. We propose the mechanism behind the interactions occurring at the interfaces. The efficiency of the ITO electrode OPVs continuously decreased to below 10% of the initial efficiency. However, the Ag devices displayed a slower degradation and maintained 50% of the initial efficiency for the same period of time.
Resumo:
The nanometer scale surface topography of a solid substrate is known to influence the extent of bacterial attachment and their subsequent proliferation to form biofilms. As an extension of our previous work on the development of a novel organic polymer coating for the prevention of growth of medically significant bacteria on three-dimensional solid surfaces, this study examines the effect of surface coating on the adhesion and proliferation tendencies of Staphylococcus aureus and compares to those previously investigated tendencies of Pseudomonas aeruginosa on similar coatings. Radio frequency plasma enhanced chemical vapor deposition was used to coat the surface of the substrate with thin film of terpinen-4-ol, a constituent of tea-tree oil known to inhibit the growth of a broad range of bacteria. The presence of the coating decreased the substrate surface roughness from approximately 2.1 nm to 0.4 nm. Similar to P. aeruginosa, S. aureus presented notably different patterns of attachment in response to the presence of the surface film, where the amount of attachment, extracellular polymeric substance production, and cell proliferation on the coated surface was found to be greatly reduced compared to that obtained on the unmodified surface. This work suggests that the antimicrobial and antifouling coating used in this study could be effectively integrated into medical and other clinically relevant devices to prevent bacterial growth and to minimize bacteria-associated adverse host responses.
Resumo:
γ-Y 2Si 2O 7 is a promising candidate material both for hightemperature structural applications and as an environmental/thermal barrier coating material due to its unique properties such as high melting point, machinability, thermal stability, low linear thermal expansion coefficient (3.9×10 -6/K, 200°-1300°C), and low thermal conductivity (<3.0 W/ṁK above 300°C). The hot corrosion behavior of γ-Y 2Si 2O 7 in thin-film molten Na 2SO 4 at 850°-1000°C for 20 h in flowing air was investigated using a thermogravimetric analyzer (TGA) and a mass spectrometer (MS). γ-Y 2Si 2O 7 exhibited good resistance against Na 2SO 4 molten salt. The kinetic curves were well fitted by a paralinear equation: the linear part was caused by the evaporation of Na2SO4 and the parabolic part came from gas products evolved from the hotcorrosion reaction. A thin silica film formed under the corrosion scale was the key factor for retarding the hot corrosion. The apparent activation energy for the corrosion of γ-Y 2Si 2O 7 in Na 2SO 4 molten salt with flowing air was evaluated to be 255 kJ/mol.
Resumo:
A numerical study is presented to examine the fingering instability of a gravity-driven thin liquid film flowing down the outer wall of a vertical cylinder. The lubrication approximation is employed to derive an evolution equation for the height of the film, which is dependent on a single parameter, the dimensionless cylinder radius. This equation is identified as a special case of that which describes thin film flow down an inclined plane. Fully three-dimensional simulations of the film depict a fingering pattern at the advancing contact line. We find the number of fingers observed in our simulations to be in excellent agreement with experimental observations and a linear stability analysis reported recently by Smolka & SeGall (Phys Fluids 23, 092103 (2011)). As the radius of the cylinder decreases, the modes of perturbation have an increased growth rate, thus increasing cylinder curvature partially acts to encourage the contact line instability. In direct competition with this behaviour, a decrease in cylinder radius means that fewer fingers are able to form around the circumference of the cylinder. Indeed, for a sufficiently small radius, a transition is observed, at which point the contact line is stable to transverse perturbations of all wavenumbers. In this regime, free surface instabilities lead to the development of wave patterns in the axial direction, and the flow features become perfectly analogous to the two-dimensional flow of a thin film down an inverted plane as studied by Lin & Kondic (Phys Fluids 22, 052105 (2010)). Finally, we simulate the flow of a single drop down the outside of the cylinder. Our results show that for drops with low volume, the cylinder curvature has the effect of increasing drop speed and hence promoting the phenomenon of pearling. On the other hand, drops with much larger volume evolve to form single long rivulets with a similar shape to a finger formed in the aforementioned simulations.
Resumo:
Indium Tin Oxide (ITO) is the most commonly used anode as a transparent electrode and more recently as an anode for organic photovoltaics (OPVs). However, there are significant drawbacks in using ITO which include high material costs, mechanical instability including brittleness and poor electrical properties which limit its use in low-cost flexible devices. We present initial results of poly(3-hexylthiophene): phenyl-C61-butyric acid methyl ester OPVs showing that an efficiency of 1.9% (short-circuit current 7.01 mA/cm2, open-circuit voltage 0.55 V, fill factor 0.49) can be attained using an ultra thin film of gold coated glass as the device anode. The initial I-V characteristics demonstrate that using high work function metals when the thin film is kept ultra thin can be used as a replacement to ITO due to their greater stability and better morphological control.
Resumo:
Thin solid films were extensively used in the making of solar cells, cutting tools, magnetic recording devices, etc. As a result, the accurate measurement of mechanical properties of the thin films, such as hardness and elastic modulus, was required. The thickness of thin films normally varies from tens of nanometers to several micrometers. It is thus challenging to measure their mechanical properties. In this study, a nanoscratch method was proposed for hardness measurement. A three-dimensional finite element method (3-D FEM) model was developed to validate the nanoscratch method and to understand the substrate effect during nanoscratch. Nanoindentation was also used for comparison. The nanoscratch method was demonstrated to be valuable for measuring hardness of thin solid films.