47 resultados para Theorem of calculus
Resumo:
Although there was substantial research into the occupational health and safety sector over the past forty years, this generally focused on statistical analyses of data related to costs and/or fatalities and injuries. There is a lack of mathematical modelling of the interactions between workers and the resulting safety dynamics of the workplace. There is also little work investigating the potential impact of different safety intervention programs prior to their implementation. In this article, we present a fundamental, differential equation-based model of workplace safety that treats worker safety habits similarly to an infectious disease in an epidemic model. Analytical results for the model, derived via phase plane and stability analysis, are discussed. The model is coupled with a model of a generic safety strategy aimed at minimising unsafe work habits, to produce an optimal control problem. The optimal control model is solved using the forward-backward sweep numerical scheme implemented in Matlab.
Resumo:
This e-book is devoted to the use of spreadsheets in the service of education in a broad spectrum of disciplines: science, mathematics, engineering, business, and general education. The effort is aimed at collecting the works of prominent researchers and educators that make use of spreadsheets as a means to communicate concepts with high educational value. The e-book brings some of the most recent applications of spreadsheets in education and research to the fore. To offer the reader a broad overview of the diversity of applications, carefully chosen articles from engineering (power systems and control), mathematics (calculus, differential equations, and probability), science (physics and chemistry), and education are provided. Some of these applications make use of Visual Basic for Applications (VBA), a versatile computer language that further expands the functionality of spreadsheets. The material included in this e-book should inspire readers to devise their own applications and enhance their teaching and/or learning experience.
Resumo:
This article lays down the foundations of the renormalization group (RG) approach for differential equations characterized by multiple scales. The renormalization of constants through an elimination process and the subsequent derivation of the amplitude equation [Chen, Phys. Rev. E 54, 376 (1996)] are given a rigorous but not abstract mathematical form whose justification is based on the implicit function theorem. Developing the theoretical framework that underlies the RG approach leads to a systematization of the renormalization process and to the derivation of explicit closed-form expressions for the amplitude equations that can be carried out with symbolic computation for both linear and nonlinear scalar differential equations and first order systems but independently of their particular forms. Certain nonlinear singular perturbation problems are considered that illustrate the formalism and recover well-known results from the literature as special cases. © 2008 American Institute of Physics.
Resumo:
Recent controversy on the quantum dots dephasing mechanisms (between pure and inelastic) is re-examined by isolating the quantum dots from their substrate by using the appropriate limits of the ionization energy theory and the quantum adiabatic theorem. When the phonons in the quantum dots are isolated adiabatically from the phonons in the substrate, the elastic or pure dephasing becomes the dominant mechanism. On the other hand, for the case where the phonons from the substrate are non-adiabatically coupled to the quantum dots, the inelastic dephasing process takes over. This switch-over is due to different elemental composition in quantum dots as compared to its substrate. We also provide unambiguous analysis as to understand why GaAs/AlGaAs quantum dots may only have pure dephasing while InAs/GaAs quantum dots give rise to the inelastic dephasing as the dominant mechanism. It is shown that the elemental composition plays an important role (of both quantum dots and substrate) in evaluating the dephasing mechanisms of quantum dots.
Resumo:
Tobacco smoking, alcohol drinking, and occupational exposures to polycyclic aromatic hydrocarbons are the major proven risk factors for human head and neck squamous-cell cancer (HNSCC). Major research focus on gene-environment interactions concerning HNSCC has been on genes encoding enzymes of metabolism for tobacco smoke constituents and repair enzymes. To investigate the role of genetically determined individual predispositions in enzymes of xenobiotic metabolism and in repair enzymes under the exogenous risk factor tobacco smoke in the carcinogenesis of HNSCC, we conducted a case-control study on 312 cases and 300 noncancer controls. We focused on the impact of 22 sequence variations in CYP1A1, CYP1B1, CYP2E1, ERCC2/XPD, GSTM1, GSTP1, GSTT1, NAT2, NQO1, and XRCC1. To assess relevant main and interactive effects of polymorphic genes on the susceptibility to HNSCC we used statistical models such as logic regression and a Bayesian version of logic regression. In subgroup analysis of nonsmokers, main effects in ERCC2 (Lys751Gln) C/C genotype and combined ERCC2 (Arg156Arg) C/A and A/A genotypes were predominant. When stratifying for smokers, the data revealed main effects on combined CYP1B1 (Leu432Val) C/G and G/G genotypes, followed by CYP1B1 (Leu432Val) G/G genotype and CYP2E1 (-70G>T) G/T genotype. When fitting logistic regression models including relevant main effects and interactions in smokers, we found relevant associations of CYP1B1 (Leu432Val) C/G genotype and CYP2E1 (-70G>T) G/T genotype (OR, 10.84; 95% CI, 1.64-71.53) as well as CYP1B1 (Leu432Val) G/G genotype and GSTM1 null/null genotype (OR, 11.79; 95% CI, 2.18-63.77) with HNSCC. The findings underline the relevance of genotypes of polymorphic CYP1B1 combined with exposures to tobacco smoke.
Resumo:
This research aims to explore and identify political risks on a large infrastructure project in an exaggerated environment to ascertain whether sufficient objective information can be gathered by project managers to utilise risk modelling techniques. During the study, the author proposes a new definition of political risk; performs a detailed project study of the Neelum Jhelum Hydroelectric Project in Pakistan; implements a probabilistic model using the principle of decomposition and Bayes probabilistic theorem and answers the question: was it possible for project managers to obtain all the relevant objective data to implement a probabilistic model?
Resumo:
Texture enhancement is an important component of image processing that finds extensive application in science and engineering. The quality of medical images, quantified using the imaging texture, plays a significant role in the routine diagnosis performed by medical practitioners. Most image texture enhancement is performed using classical integral order differential mask operators. Recently, first order fractional differential operators were used to enhance images. Experimentation with these methods led to the conclusion that fractional differential operators not only maintain the low frequency contour features in the smooth areas of the image, but they also nonlinearly enhance edges and textures corresponding to high frequency image components. However, whilst these methods perform well in particular cases, they are not routinely useful across all applications. To this end, we apply the second order Riesz fractional differential operator to improve upon existing approaches of texture enhancement. Compared with the classical integral order differential mask operators and other first order fractional differential operators, we find that our new algorithms provide higher signal to noise values and superior image quality.
Resumo:
Background Although the detrimental impact of major depressive disorder (MDD) at the individual level has been described, its global epidemiology remains unclear given limitations in the data. Here we present the modelled epidemiological profile of MDD dealing with heterogeneity in the data, enforcing internal consistency between epidemiological parameters and making estimates for world regions with no empirical data. These estimates were used to quantify the burden of MDD for the Global Burden of Disease Study 2010 (GBD 2010). Method Analyses drew on data from our existing literature review of the epidemiology of MDD. DisMod-MR, the latest version of the generic disease modelling system redesigned as a Bayesian meta-regression tool, derived prevalence by age, year and sex for 21 regions. Prior epidemiological knowledge, study- and country-level covariates adjusted sub-optimal raw data. Results There were over 298 million cases of MDD globally at any point in time in 2010, with the highest proportion of cases occurring between 25 and 34 years. Global point prevalence was very similar across time (4.4% (95% uncertainty: 4.2–4.7%) in 1990, 4.4% (4.1–4.7%) in 2005 and 2010), but higher in females (5.5% (5.0–6.0%) compared to males (3.2% (3.0–3.6%) in 2010. Regions in conflict had higher prevalence than those with no conflict. The annual incidence of an episode of MDD followed a similar age and regional pattern to prevalence but was about one and a half times higher, consistent with an average duration of 37.7 weeks. Conclusion We were able to integrate available data, including those from high quality surveys and sub-optimal studies, into a model adjusting for known methodological sources of heterogeneity. We were also able to estimate the epidemiology of MDD in regions with no available data. This informed GBD 2010 and the public health field, with a clearer understanding of the global distribution of MDD.
Resumo:
Background Depressive disorders were a leading cause of burden in the Global Burden of Disease (GBD) 1990 and 2000 studies. Here, we analyze the burden of depressive disorders in GBD 2010 and present severity proportions, burden by country, region, age, sex, and year, as well as burden of depressive disorders as a risk factor for suicide and ischemic heart disease. Methods and Findings Burden was calculated for major depressive disorder (MDD) and dysthymia. A systematic review of epidemiological data was conducted. The data were pooled using a Bayesian meta-regression. Disability weights from population survey data quantified the severity of health loss from depressive disorders. These weights were used to calculate years lived with disability (YLDs) and disability adjusted life years (DALYs). Separate DALYs were estimated for suicide and ischemic heart disease attributable to depressive disorders.Depressive disorders were the second leading cause of YLDs in 2010. MDD accounted for 8.2% (5.9%-10.8%) of global YLDs and dysthymia for 1.4% (0.9%-2.0%). Depressive disorders were a leading cause of DALYs even though no mortality was attributed to them as the underlying cause. MDD accounted for 2.5% (1.9%-3.2%) of global DALYs and dysthymia for 0.5% (0.3%-0.6%). There was more regional variation in burden for MDD than for dysthymia; with higher estimates in females, and adults of working age. Whilst burden increased by 37.5% between 1990 and 2010, this was due to population growth and ageing. MDD explained 16 million suicide DALYs and almost 4 million ischemic heart disease DALYs. This attributable burden would increase the overall burden of depressive disorders from 3.0% (2.2%-3.8%) to 3.8% (3.0%-4.7%) of global DALYs. Conclusions GBD 2010 identified depressive disorders as a leading cause of burden. MDD was also a contributor of burden allocated to suicide and ischemic heart disease. These findings emphasize the importance of including depressive disorders as a public-health priority and implementing cost-effective interventions to reduce its burden.Please see later in the article for the Editors' Summary.
Resumo:
We present a systematic, practical approach to developing risk prediction systems, suitable for use with large databases of medical information. An important part of this approach is a novel feature selection algorithm which uses the area under the receiver operating characteristic (ROC) curve to measure the expected discriminative power of different sets of predictor variables. We describe this algorithm and use it to select variables to predict risk of a specific adverse pregnancy outcome: failure to progress in labour. Neural network, logistic regression and hierarchical Bayesian risk prediction models are constructed, all of which achieve close to the limit of performance attainable on this prediction task. We show that better prediction performance requires more discriminative clinical information rather than improved modelling techniques. It is also shown that better diagnostic criteria in clinical records would greatly assist the development of systems to predict risk in pregnancy. We present a systematic, practical approach to developing risk prediction systems, suitable for use with large databases of medical information. An important part of this approach is a novel feature selection algorithm which uses the area under the receiver operating characteristic (ROC) curve to measure the expected discriminative power of different sets of predictor variables. We describe this algorithm and use it to select variables to predict risk of a specific adverse pregnancy outcome: failure to progress in labour. Neural network, logistic regression and hierarchical Bayesian risk prediction models are constructed, all of which achieve close to the limit of performance attainable on this prediction task. We show that better prediction performance requires more discriminative clinical information rather than improved modelling techniques. It is also shown that better diagnostic criteria in clinical records would greatly assist the development of systems to predict risk in pregnancy.
Resumo:
To further investigate susceptibility loci identified by genome-wide association studies, we genotyped 5,500 SNPs across 14 associated regions in 8,000 samples from a control group and 3 diseases: type 2 diabetes (T2D), coronary artery disease (CAD) and Graves' disease. We defined, using Bayes theorem, credible sets of SNPs that were 95% likely, based on posterior probability, to contain the causal disease-associated SNPs. In 3 of the 14 regions, TCF7L2 (T2D), CTLA4 (Graves' disease) and CDKN2A-CDKN2B (T2D), much of the posterior probability rested on a single SNP, and, in 4 other regions (CDKN2A-CDKN2B (CAD) and CDKAL1, FTO and HHEX (T2D)), the 95% sets were small, thereby excluding most SNPs as potentially causal. Very few SNPs in our credible sets had annotated functions, illustrating the limitations in understanding the mechanisms underlying susceptibility to common diseases. Our results also show the value of more detailed mapping to target sequences for functional studies. © 2012 Nature America, Inc. All rights reserved.
Resumo:
Many physical processes appear to exhibit fractional order behavior that may vary with time and/or space. The continuum of order in the fractional calculus allows the order of the fractional operator to be considered as a variable. In this paper, we consider a new space–time variable fractional order advection–dispersion equation on a finite domain. The equation is obtained from the standard advection–dispersion equation by replacing the first-order time derivative by Coimbra’s variable fractional derivative of order α(x)∈(0,1]α(x)∈(0,1], and the first-order and second-order space derivatives by the Riemann–Liouville derivatives of order γ(x,t)∈(0,1]γ(x,t)∈(0,1] and β(x,t)∈(1,2]β(x,t)∈(1,2], respectively. We propose an implicit Euler approximation for the equation and investigate the stability and convergence of the approximation. Finally, numerical examples are provided to show that the implicit Euler approximation is computationally efficient.
Resumo:
Permissions are special case of deontic effects and play important role compliance. Essentially they are used to determine the obligations or prohibitions to contrary. A formal language e.g., temporal logic, event-calculus et., not able to represent permissions is doomed to be unable to represent most of the real-life legal norms. In this paper we address this issue and extend deontic-event-calculus (DEC) with new predicates for modelling permissions enabling it to elegantly capture the intuition of real-life cases of permissions.
Resumo:
The aim of this research was to identify the role of brand reputation in encouraging consumer willingness to provide personal data online, for the benefits of personalisation. This study extends on Malhotra, Kim and Agarwal’s (2004) Internet Users Information Privacy Concerns Model, and uses the theoretical underpinning of Social Contract Theory to assess how brand reputation moderates the relationship between trusting beliefs and perceived value (Privacy Calculus framework) with willingness to give personal information. The research is highly relevant as most privacy research undertaken to date focuses on consumer related concerns. Very little research exists examining the role of brand reputation and online privacy. Practical implications of this research include gaining knowledge as to how to minimise online privacy concerns; improve brand reputation; and provide insight on how to reduce consumer resistance to the collection of personal information and encourage consumer opt-in.