57 resultados para Tagging


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Building and maintaining software are not easy tasks. However, thanks to advances in web technologies, a new paradigm is emerging in software development. The Service Oriented Architecture (SOA) is a relatively new approach that helps bridge the gap between business and IT and also helps systems remain exible. However, there are still several challenges with SOA. As the number of available services grows, developers are faced with the problem of discovering the services they need. Public service repositories such as Programmable Web provide only limited search capabilities. Several mechanisms have been proposed to improve web service discovery by using semantics. However, most of these require manually tagging the services with concepts in an ontology. Adding semantic annotations is a non-trivial process that requires a certain skill-set from the annotator and also the availability of domain ontologies that include the concepts related to the topics of the service. These issues have prevented these mechanisms becoming widespread. This thesis focuses on two main problems. First, to avoid the overhead of manually adding semantics to web services, several automatic methods to include semantics in the discovery process are explored. Although experimentation with some of these strategies has been conducted in the past, the results reported in the literature are mixed. Second, Wikipedia is explored as a general-purpose ontology. The benefit of using it as an ontology is assessed by comparing these semantics-based methods to classic term-based information retrieval approaches. The contribution of this research is significant because, to the best of our knowledge, a comprehensive analysis of the impact of using Wikipedia as a source of semantics in web service discovery does not exist. The main output of this research is a web service discovery engine that implements these methods and a comprehensive analysis of the benefits and trade-offs of these semantics-based discovery approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tags or personal metadata for annotating web resources have been widely adopted in Web 2.0 sites. However, as tags are freely chosen by users, the vocabularies are diverse, ambiguous and sometimes only meaningful to individuals. Tag recommenders may assist users during tagging process. Its objective is to suggest relevant tags to use as well as to help consolidating vocabulary in the systems. In this paper we discuss our approach for providing personalized tag recommendation by making use of existing domain ontology generated from folksonomy. Specifically we evaluated the approach in sparse situation. The evaluation shows that the proposed ontology-based method has improved the accuracy of tag recommendation in this situation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As proteins within cells are spatially organized according to their role, knowledge about protein localization gives insight into protein function. Here, we describe the LOPIT technique (localization of organelle proteins by isotope tagging) developed for the simultaneous and confident determination of the steady-state distribution of hundreds of integral membrane proteins within organelles. The technique uses a partial membrane fractionation strategy in conjunction with quantitative proteomics. Localization of proteins is achieved by measuring their distribution pattern across the density gradient using amine-reactive isotope tagging and comparing these patterns with those of known organelle residents. LOPIT relies on the assumption that proteins belonging to the same organelle will co-fractionate. Multivariate statistical tools are then used to group proteins according to the similarities in their distributions, and hence localization without complete centrifugal separation is achieved. The protocol requires approximately 3 weeks to complete and can be applied in a high-throughput manner to material from many varied sources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spatial organisation of proteins according to their function plays an important role in the specificity of their molecular interactions. Emerging proteomics methods seek to assign proteins to sub-cellular locations by partial separation of organelles and computational analysis of protein abundance distributions among partially separated fractions. Such methods permit simultaneous analysis of unpurified organelles and promise proteome-wide localisation in scenarios wherein perturbation may prompt dynamic re-distribution. Resolving organelles that display similar behavior during a protocol designed to provide partial enrichment represents a possible shortcoming. We employ the Localisation of Organelle Proteins by Isotope Tagging (LOPIT) organelle proteomics platform to demonstrate that combining information from distinct separations of the same material can improve organelle resolution and assignment of proteins to sub-cellular locations. Two previously published experiments, whose distinct gradients are alone unable to fully resolve six known protein-organelle groupings, are subjected to a rigorous analysis to assess protein-organelle association via a contemporary pattern recognition algorithm. Upon straightforward combination of single-gradient data, we observe significant improvement in protein-organelle association via both a non-linear support vector machine algorithm and partial least-squares discriminant analysis. The outcome yields suggestions for further improvements to present organelle proteomics platforms, and a robust analytical methodology via which to associate proteins with sub-cellular organelles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plants transformed with Agrobacterium frequently contain T-DNA concatamers with direct-repeat (d/r) or inverted-repeat (i/r) transgene integrations, and these repetitive T-DNA insertions are often associated with transgene silencing. To facilitate the selection of transgenic lines with simple T-DNA insertions, we constructed a binary vector (pSIV) based on the principle of hairpin RNA (hpRNA)-induced gene silencing. The vector is designed so that any transformed cells that contain more than one insertion per locus should generate hpRNA against the selective marker gene, leading to its silencing. These cells should, therefore, be sensitive to the selective agent and less likely to regenerate. Results from Arabidopsis and tobacco transformation showed that pSIV gave considerably fewer transgenic lines with repetitive insertions than did a conventional T-DNA vector (pCON). Furthermore, the transgene was more stably expressed in the pSIV plants than in the pCON plants. Rescue of plant DNA flanking sequences from pSIV plants was significantly more frequent than from pCON plants, suggesting that pSIV is potentially useful for T-DNA tagging. Our results revealed a perfect correlation between the presence of tail-to-tail inverted repeats and transgene silencing, supporting the view that read-through hpRNA transcript derived from i/r T-DNA insertions is a primary inducer of transgene silencing in plants. © CSIRO 2005.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present findings from a field trial of CAM (Cooperative Artefact Memory) -- a mobile-tagging based messaging system -- in a design studio environment. CAM allows individuals to collaboratively store relevant information onto their physical design artefacts, such as sketches, collages, story-boards, and physical mock-ups in the form of messages, annotations and external web links. We studied the use of CAM in three student design projects. We observed that CAM facilitated new ways of collaborating in joint design projects. The serendipitous and asynchronous nature of CAM facilitated expressions of design aesthetics, allowed designers to have playful interactions, supported exploration of new design ideas, and supported designers' reflective practices. In general, our results show how CAM transformed mundane design artefacts into "living" artefacts that made the creative and playful side of cooperative design visible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Physical design objects such as sketches, drawings, collages, storyboards and models play an important role in supporting communication and coordination in design studios. CAM (Cooperative Artefact Memory) is a mobile-tagging based messaging system that allows designers to collaboratively store relevant information onto their design objects in the form of messages, annotations and external web links. We studied the use of CAM in a Product Design studio over three weeks, involving three different design teams. In this paper, we briefly describe CAM and show how it serves as 'object memory'.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we report the results of a field trial of a Ubicomp system called CAM that is aimed at supporting and enhancing collaboration in a design studio environment. CAM uses a mobile-tagging application which allows designers to collaboratively store relevant information onto their physical design objects in the form of messages, annotations and external web links. The purpose of our field trial was to explore the role of augmented objects in supporting and enhancing creative work. Our results show that CAM was used not only to support participants' mutual awareness and coordination but also to facilitate designers in appropriating their augmented design objects to be explorative, extendable and playful, supporting creative aspects of design work. In general, our results show how CAM transformed static design objects into 'remarkable' objects that made the creative and playful side of cooperative design visible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we provide the results of a field study of a Ubicomp system called CAM (Cooperative Artefact Memory) in a Product Design studio. CAM is a mobile-tagging based messaging system that allows designers to store relevant information onto their design artefacts in the form of messages, annotations and external web links. From our field study results, we observe that the use of CAM adds another shared ‘space’ onto these design artefacts – that are in their natural settings boundary objects themselves. In the paper, we provide several examples from the field illustrating how CAM helps in the design process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The morphology of plasmonic nano-assemblies has a direct influence on optical properties, such as localised surface plasmon resonance (LSPR) and surface enhanced Raman scattering (SERS) intensity. Assemblies with core-satellite morphologies are of particular interest, because this morphology has a high density of hot-spots, while constraining the overall size. Herein, a simple method is reported for the self-assembly of gold NPs nano-assemblies with a core-satellite morphology, which was mediated by hyperbranched polymer (HBP) linkers. The HBP linkers have repeat units that do not interact strongly with gold NPs, but have multiple end-groups that specifically interact with the gold NPs and act as anchoring points resulting in nano-assemblies with a large (~48 nm) core surrounded by smaller (~15 nm) satellites. It was possible to control the number of satellites in an assembly which allowed optical parameters such as SPR maxima and the SERS intensity to be tuned. These results were found to be consistent with finite-difference time domain (FDTD) simulations. Furthermore, the multiplexing of the nano-assemblies with a series of Raman tag molecules was demonstrated, without an observable signal arising from the HBP linker after tagging. Such plasmonic nano-assemblies could potentially serve as efficient SERS based diagnostics or biomedical imaging agents in nanomedicine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research falls in the area of enhancing the quality of tag-based item recommendation systems. It aims to achieve this by employing a multi-dimensional user profile approach and by analyzing the semantic aspects of tags. Tag-based recommender systems have two characteristics that need to be carefully studied in order to build a reliable system. Firstly, the multi-dimensional correlation, called as tag assignment , should be appropriately modelled in order to create the user profiles [1]. Secondly, the semantics behind the tags should be considered properly as the flexibility with their design can cause semantic problems such as synonymy and polysemy [2]. This research proposes to address these two challenges for building a tag-based item recommendation system by employing tensor modeling as the multi-dimensional user profile approach, and the topic model as the semantic analysis approach. The first objective is to optimize the tensor model reconstruction and to improve the model performance in generating quality rec-ommendation. A novel Tensor-based Recommendation using Probabilistic Ranking (TRPR) method [3] has been developed. Results show this method to be scalable for large datasets and outperforming the benchmarking methods in terms of accuracy. The memory efficient loop implements the n-mode block-striped (matrix) product for tensor reconstruction as an approximation of the initial tensor. The probabilistic ranking calculates the probabil-ity of users to select candidate items using their tag preference list based on the entries generated from the reconstructed tensor. The second objective is to analyse the tag semantics and utilize the outcome in building the tensor model. This research proposes to investigate the problem using topic model approach to keep the tags nature as the “social vocabulary” [4]. For the tag assignment data, topics can be generated from the occurrences of tags given for an item. However there is only limited amount of tags availa-ble to represent items as collection of topics, since an item might have only been tagged by using several tags. Consequently, the generated topics might not able to represent the items appropriately. Furthermore, given that each tag can belong to any topics with various probability scores, the occurrence of tags cannot simply be mapped by the topics to build the tensor model. A standard weighting technique will not appropriately calculate the value of tagging activity since it will define the context of an item using a tag instead of a topic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acoustic sensors allow scientists to scale environmental monitoring over large spatiotemporal scales. The faunal vocalisations captured by these sensors can answer ecological questions, however, identifying these vocalisations within recorded audio is difficult: automatic recognition is currently intractable and manual recognition is slow and error prone. In this paper, a semi-automated approach to call recognition is presented. An automated decision support tool is tested that assists users in the manual annotation process. The respective strengths of human and computer analysis are used to complement one another. The tool recommends the species of an unknown vocalisation and thereby minimises the need for the memorization of a large corpus of vocalisations. In the case of a folksonomic tagging system, recommending species tags also minimises the proliferation of redundant tag categories. We describe two algorithms: (1) a “naïve” decision support tool (16%–64% sensitivity) with efficiency of O(n) but which becomes unscalable as more data is added and (2) a scalable alternative with 48% sensitivity and an efficiency ofO(log n). The improved algorithm was also tested in a HTML-based annotation prototype. The result of this work is a decision support tool for annotating faunal acoustic events that may be utilised by other bioacoustics projects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Discounted Cumulative Gain (DCG) is a well-known ranking evaluation measure for models built with multiple relevance graded data. By handling tagging data used in recommendation systems as an ordinal relevance set of {negative,null,positive}, we propose to build a DCG based recommendation model. We present an efficient and novel learning-to-rank method by optimizing DCG for a recommendation model using the tagging data interpretation scheme. Evaluating the proposed method on real-world datasets, we demonstrate that the method is scalable and outperforms the benchmarking methods by generating a quality top-N item recommendation list.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Source Monitoring Framework is a promising model of constructive memory, yet fails because it is connectionist and does not allow content tagging. The Dual-Process Signal Detection Model is an improvement because it reduces mnemic qualia to a single memory signal (or degree of belief), but still commits itself to non-discrete representation. By supposing that ‘tagging’ means the assignment of propositional attitudes to aggregates of anemic characteristics informed inductively, then a discrete model becomes plausible. A Bayesian model of source monitoring accounts for the continuous variation of inputs and assignment of prior probabilities to memory content. A modified version of the High-Threshold Dual-Process model is recommended to further source monitoring research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: Recent association studies by the Australo-Anglo-American Spondyloarthritis Consortium (TASC) in Caucasian European populations from Australia, North America and the UK have identified a number of genes as being associated with ankylosing spondylitis (AS). A candidate gene study in a Han Chinese population was performed based on these findings to identify associated genes in this population. Methods: A case-control study was performed in a Han Chinese population of patients with AS (n=775) and controls (n=1587) from Shanghai and Nanjing. All patients met the modified New York criteria for AS. The cases and controls were genotyped for 115 single nucleotide polymorphisms (SNPs) tagging IL23R, ERAP1, STAT3, JAK2, TNFRSF1A and TRADD, as well as other confirmation SNPs from the TASC study, using the Sequenom iPlex and the ABI OpenArray platforms. Statistical analysis of genotyped SNPs was performed using the Cochran - Armitage test for trend and meta-analysis was performed using METAL. SNPs in AS-associated genes in this study were then imputed using MaCH, and association with AS tested by logistic regression. Results: SNPs in TNFRSF1A (rs4149577, p=8.2×10-4), STAT3 (rs2293152, p=0.0015; rs1053005, p=0.017) and ERAP1 (rs27038, p=0.0091; rs27037, p=0.0092) were significantly associated with AS in Han Chinese. Association was also observed between AS and the intergenic region 2p15 (rs10865331, p=0.023). The lack of association between AS and IL23R in Han Chinese was confirmed (all SNPs p>0.1). Conclusions: The study results demonstrate for the first time that genetic polymorphisms in STAT3, TNFRSF1A and 2p15 are associated with AS in Han Chinese, suggesting common pathogenic mechanisms for the disease in Chinese and Caucasian European populations. Furthermore, previous findings demonstrating that ERAP1, but not IL23R, is associated with AS in Chinese patients were confirmed.