168 resultados para TSP module
Resumo:
This paper presents a new approach to improving the effectiveness of autonomous systems that deal with dynamic environments. The basis of the approach is to find repeating patterns of behavior in the dynamic elements of the system, and then to use predictions of the repeating elements to better plan goal directed behavior. It is a layered approach involving classifying, modeling, predicting and exploiting. Classifying involves using observations to place the moving elements into previously defined classes. Modeling involves recording features of the behavior on a coarse grained grid. Exploitation is achieved by integrating predictions from the model into the behavior selection module to improve the utility of the robot's actions. This is in contrast to typical approaches that use the model to select between different strategies or plays. Three methods of adaptation to the dynamic features of the environment are explored. The effectiveness of each method is determined using statistical tests over a number of repeated experiments. The work is presented in the context of predicting opponent behavior in the highly dynamic and multi-agent robot soccer domain (RoboCup).
Resumo:
We describe the design and implementation of a public-key platform, secFleck, based on a commodity Trusted Platform Module (TPM) chip that extends the capability of a standard node. Unlike previous software public-key implementations this approach provides E- Commerce grade security; is computationally fast, energy efficient; and has low financial cost — all essential attributes for secure large-scale sen- sor networks. We describe the secFleck message security services such as confidentiality, authenticity and integrity, and present performance re- sults including computation time, energy consumption and cost. This is followed by examples, built on secFleck, of symmetric key management, secure RPC and secure software update.
Resumo:
This article presents the design and implementation of a trusted sensor node that provides Internet-grade security at low system cost. We describe trustedFleck, which uses a commodity Trusted Platform Module (TPM) chip to extend the capabilities of a standard wireless sensor node to provide security services such as message integrity, confidentiality, authenticity, and system integrity based on RSA public-key and XTEA-based symmetric-key cryptography. In addition trustedFleck provides secure storage of private keys and provides platform configuration registers (PCRs) to store system configurations and detect code tampering. We analyze system performance using metrics that are important for WSN applications such as computation time, memory size, energy consumption and cost. Our results show that trustedFleck significantly outperforms previous approaches (e.g., TinyECC) in terms of these metrics while providing stronger security levels. Finally, we describe a number of examples, built on trustedFleck, of symmetric key management, secure RPC, secure software update, and remote attestation.
Resumo:
Communication security for wireless sensor networks (WSN) is a challenge due to the limited computation and energy resources available at nodes. We describe the design and implementation of a public-key (PK) platform based on a standard Trusted Platform Module (TPM) chip that extends the capability of a standard node. The result facilitates message security services such as confidentiality, authenticity and integrity. We present results including computation time, energy consumption and cost.
Resumo:
This paper proposes a security architecture for the basic cross indexing systems emerging as foundational structures in current health information systems. In these systems unique identifiers are issued to healthcare providers and consumers. In most cases, such numbering schemes are national in scope and must therefore necessarily be used via an indexing system to identify records contained in pre-existing local, regional or national health information systems. Most large scale electronic health record systems envisage that such correlation between national healthcare identifiers and pre-existing identifiers will be performed by some centrally administered cross referencing, or index system. This paper is concerned with the security architecture for such indexing servers and the manner in which they interface with pre-existing health systems (including both workstations and servers). The paper proposes two required structures to achieve the goal of a national scale, and secure exchange of electronic health information, including: (a) the employment of high trust computer systems to perform an indexing function, and (b) the development and deployment of an appropriate high trust interface module, a Healthcare Interface Processor (HIP), to be integrated into the connected workstations or servers of healthcare service providers. This proposed architecture is specifically oriented toward requirements identified in the Connectivity Architecture for Australia’s e-health scheme as outlined by NEHTA and the national e-health strategy released by the Australian Health Ministers.
Resumo:
Creating sustainable urban environments is one of the challenging issues that need a clear vision and implementation strategies involving changes in governmental values and decision making process for local governments. Particularly, internalisation of environmental externalities of daily urban activities (e.g. manufacturing, transportation and so on) has immense importance for which local policies are formulated to provide better living conditions for the people inhabiting urban areas. Even if environmental problems are defined succinctly by various stakeholders, complicated nature of sustainability issues demand a structured evaluation strategy and well-defined sustainability parameters for efficient and effective policy making. Following this reasoning, this study involves assessment of sustainability performance of urban settings mainly focusing on environmental problems caused by rapid urban expansion and transformation. By taking into account land-use and transportation interaction, it tries to reveal how future urban developments would alter daily urban travel behaviour of people and affect the urban and natural environments. The paper introduces a grid-based indexing method developed for this research and trailed as a GIS-based decision support tool to analyse and model selected spatial and aspatial indicators of sustainability in the Gold Coast. This process reveals parameters of site specific relationship among selected indicators that are used to evaluate index-based performance characteristics of the area. The evaluation is made through an embedded decision support module by assigning relative weights to indicators. Resolution of selected grid-based unit of analysis provides insights about service level of projected urban development proposals at a disaggregate level, such as accessibility to transportation and urban services, and pollution. The paper concludes by discussing the findings including the capacity of the decision support system to assist decision-makers in determining problematic areas and developing intervention policies for sustainable outcomes of future developments.
Resumo:
The control and coordination of multiple mobile robots is a challenging task; particularly in environments with multiple, rapidly moving obstacles and agents. This paper describes a robust approach to multi-robot control, where robustness is gained from competency at every layer of robot control. The layers are: (i) a central coordination system (MAPS), (ii) an action system (AES), (iii) a navigation module, and (iv) a low level dynamic motion control system. The multi-robot coordination system assigns each robot a role and a sub-goal. Each robots action execution system then assumes the assigned role and attempts to achieve the specified sub-goal. The robots navigation system directs the robot to specific goal locations while ensuring that the robot avoids any obstacles. The motion system maps the heading and speed information from the navigation system to force-constrained motion. This multi-robot system has been extensively tested and applied in the robot soccer domain using both centralized and distributed coordination.
Resumo:
Component software has many benefits, most notably increased software re-use; however, the component software process places heavy burdens on programming language technology, which modern object-oriented programming languages do not address. In particular, software components require specifications that are both sufficiently expressive and sufficiently abstract, and, where possible, these specifications should be checked formally by the programming language. This dissertation presents a programming language called Mentok that provides two novel programming language features enabling improved specification of stateful component roles. Negotiable interfaces are interface types extended with protocols, and allow specification of changing method availability, including some patterns of out-calls and re-entrance. Type layers are extensions to module signatures that allow specification of abstract control flow constraints through the interfaces of a component-based application. Development of Mentok's unique language features included creation of MentokC, the Mentok compiler, and formalization of key properties of Mentok in mini-languages called MentokP and MentokL.
Resumo:
This work is focussed on developing a commissioning procedure so that a Monte Carlo model, which uses BEAMnrc’s standard VARMLC component module, can be adapted to match a specific BrainLAB m3 micro-multileaf collimator (μMLC). A set of measurements are recommended, for use as a reference against which the model can be tested and optimised. These include radiochromic film measurements of dose from small and offset fields, as well as measurements of μMLC transmission and interleaf leakage. Simulations and measurements to obtain μMLC scatter factors are shown to be insensitive to relevant model parameters and are therefore not recommended, unless the output of the linear accelerator model is in doubt. Ultimately, this note provides detailed instructions for those intending to optimise a VARMLC model to match the dose delivered by their local BrainLAB m3 μMLC device.
Resumo:
In open railway access markets, a train service provider (TSP) negotiates with an infrastructure provider (IP) for track access rights. This negotiation has been modeled by a multi-agent system (MAS) in which the IP and TSP are represented by separate software agents. One task of the IP agent is to generate feasible (and preferably optimal) track access rights, subject to the constraints submitted by the TSP agent. This paper formulates an IP-TSP transaction and proposes a branch-and-bound algorithm for the IP agent to identify the optimal track access rights. Empirical simulation results show that the model is able to emulate rational agent behaviors. The simulation results also show good consistency between timetables attained from the proposed methods and those derived by the scheduling principles adopted in practice.
Resumo:
My research investigates why nouns are learned disproportionately more frequently than other kinds of words during early language acquisition (Gentner, 1982; Gleitman, et al., 2004). This question must be considered in the context of cognitive development in general. Infants have two major streams of environmental information to make meaningful: perceptual and linguistic. Perceptual information flows in from the senses and is processed into symbolic representations by the primitive language of thought (Fodor, 1975). These symbolic representations are then linked to linguistic input to enable language comprehension and ultimately production. Yet, how exactly does perceptual information become conceptualized? Although this question is difficult, there has been progress. One way that children might have an easier job is if they have structures that simplify the data. Thus, if particular sorts of perceptual information could be separated from the mass of input, then it would be easier for children to refer to those specific things when learning words (Spelke, 1990; Pylyshyn, 2003). It would be easier still, if linguistic input was segmented in predictable ways (Gentner, 1982; Gleitman, et al., 2004) Unfortunately the frequency of patterns in lexical or grammatical input cannot explain the cross-cultural and cross-linguistic tendency to favor nouns over verbs and predicates. There are three examples of this failure: 1) a wide variety of nouns are uttered less frequently than a smaller number of verbs and yet are learnt far more easily (Gentner, 1982); 2) word order and morphological transparency offer no insight when you contrast the sentence structures and word inflections of different languages (Slobin, 1973) and 3) particular language teaching behaviors (e.g. pointing at objects and repeating names for them) have little impact on children's tendency to prefer concrete nouns in their first fifty words (Newport, et al., 1977). Although the linguistic solution appears problematic, there has been increasing evidence that the early visual system does indeed segment perceptual information in specific ways before the conscious mind begins to intervene (Pylyshyn, 2003). I argue that nouns are easier to learn because their referents directly connect with innate features of the perceptual faculty. This hypothesis stems from work done on visual indexes by Zenon Pylyshyn (2001, 2003). Pylyshyn argues that the early visual system (the architecture of the "vision module") segments perceptual data into pre-conceptual proto-objects called FINSTs. FINSTs typically correspond to physical things such as Spelke objects (Spelke, 1990). Hence, before conceptualization, visual objects are picked out by the perceptual system demonstratively, like a finger pointing indicating ‘this’ or ‘that’. I suggest that this primitive system of demonstration elaborates on Gareth Evan's (1982) theory of nonconceptual content. Nouns are learnt first because their referents attract demonstrative visual indexes. This theory also explains why infants less often name stationary objects such as plate or table, but do name things that attract the focal attention of the early visual system, i.e., small objects that move, such as ‘dog’ or ‘ball’. This view leaves open the question how blind children learn words for visible objects and why children learn category nouns (e.g. 'dog'), rather than proper nouns (e.g. 'Fido') or higher taxonomic distinctions (e.g. 'animal').
Resumo:
In an open railway access market, the Infrastructure Provider (IP), upon the receipts of service bids from the Train Service Providers (TSPs), assigns track access rights according to its own business objectives and the merits of the bids; and produces the train service timetable through negotiations. In practice, IP chooses to negotiate with the TSPs one by one in such a sequence that IP optimizes its objectives. The TSP bids are usually very complicated, containing a large number of parameters in different natures. It is a difficult task even for an expert to give a priority sequence for negotiations from the contents of the bids. This study proposes the application of fuzzy ranking method to compare and prioritize the TSP bids in order to produce a negotiation sequence. The results of this study allow investigations on the behaviors of the stakeholders in bid preparation and negotiation, as well as evaluation of service quality in the open railway market.
Resumo:
This paper describes a secure framework for tracking applications that use the Galileo signal authentication services. First a number of limitations that affect the trust of critical tracking applications, even in presence of authenticated GNSS signals, are detailed. Requirements for secure tracking are then introduced; detailing how the integrity characteristics of the Galileo authentication could enhance the security of active tracking applications. This paper concludes with a discussion of our existing tracking technology using a Siemens TC45 GSM/GPRS module and future development utilizing our previously proposed trusted GNSS receiver.
Resumo:
Multidisciplinary learning, interdisciplinary learning and transdisciplinary learning are often used with a similar meaning, but the misunderstanding of these terms may cause a failure of defining learner needs and developing high quality learning design. In this article, the three terms are reviewed in line with learner engagement and are conceptualised according to different types and levels of interactivity. An undergraduate course, named Creative Industries: Making Connections, was designed to deliver various learning modules to over 1200 students from 11 different disciplines in a blended learning mode. A visual communication learning module in the course, in particular, challenges students as well as academic staff to experience transdisciplinary learning. A survey was conducted to evaluate students' learning experience in the visual communication learning module. The results of the survey bring up meaningful implications for the realisation of transdisciplinary learning.
Resumo:
This study conceptualizes, operationalises and validates the concept of Knowledge Management Competence as a four-phase multidimensional formative index. Employing survey data from 310 respondents representing 27 organizations using the SAP Enterprise System Financial module, the study results demonstrate a large, significant, positive relationship between Knowledge Management Competence and Enterprise Systems Success (ES-success, as conceived by Gable Sedera and Chan (2008)); suggesting important implications for practice. Strong evidence of the validity of Knowledge Management Competence as conceived and operationalised, too suggests potential from future research evaluating its relationships with possible antecedents and consequences.