226 resultados para TECHNIQUES: PHOTOMETRIC
Resumo:
Structural health monitoring (SHM) is the term applied to the procedure of monitoring a structure’s performance, assessing its condition and carrying out appropriate retrofitting so that it performs reliably, safely and efficiently. Bridges form an important part of a nation’s infrastructure. They deteriorate due to age and changing load patterns and hence early detection of damage helps in prolonging the lives and preventing catastrophic failures. Monitoring of bridges has been traditionally done by means of visual inspection. With recent developments in sensor technology and availability of advanced computing resources, newer techniques have emerged for SHM. Acoustic emission (AE) is one such technology that is attracting attention of engineers and researchers all around the world. This paper discusses the use of AE technology in health monitoring of bridge structures, with a special focus on analysis of recorded data. AE waves are stress waves generated by mechanical deformation of material and can be recorded by means of sensors attached to the surface of the structure. Analysis of the AE signals provides vital information regarding the nature of the source of emission. Signal processing of the AE waveform data can be carried out in several ways and is predominantly based on time and frequency domains. Short time Fourier transform and wavelet analysis have proved to be superior alternatives to traditional frequency based analysis in extracting information from recorded waveform. Some of the preliminary results of the application of these analysis tools in signal processing of recorded AE data will be presented in this paper.
Resumo:
This research investigates wireless intrusion detection techniques for detecting attacks on IEEE 802.11i Robust Secure Networks (RSNs). Despite using a variety of comprehensive preventative security measures, the RSNs remain vulnerable to a number of attacks. Failure of preventative measures to address all RSN vulnerabilities dictates the need for a comprehensive monitoring capability to detect all attacks on RSNs and also to proactively address potential security vulnerabilities by detecting security policy violations in the WLAN. This research proposes novel wireless intrusion detection techniques to address these monitoring requirements and also studies correlation of the generated alarms across wireless intrusion detection system (WIDS) sensors and the detection techniques themselves for greater reliability and robustness. The specific outcomes of this research are: A comprehensive review of the outstanding vulnerabilities and attacks in IEEE 802.11i RSNs. A comprehensive review of the wireless intrusion detection techniques currently available for detecting attacks on RSNs. Identification of the drawbacks and limitations of the currently available wireless intrusion detection techniques in detecting attacks on RSNs. Development of three novel wireless intrusion detection techniques for detecting RSN attacks and security policy violations in RSNs. Development of algorithms for each novel intrusion detection technique to correlate alarms across distributed sensors of a WIDS. Development of an algorithm for automatic attack scenario detection using cross detection technique correlation. Development of an algorithm to automatically assign priority to the detected attack scenario using cross detection technique correlation.
Resumo:
In this paper techniques for scheduling additional train services (SATS) are considered as is train scheduling involving general time window constraints, fixed operations, maintenance activities and periods of section unavailability. The SATS problem is important because additional services must often be given access to the railway and subsequently integrated into current timetables. The SATS problem therefore considers the competition for railway infrastructure between new services and existing services belonging to the same or different operators. The SATS problem is characterised as a hybrid job shop scheduling problem with time window constraints. To solve this problem constructive algorithm and metaheuristic scheduling techniques that operate upon a disjunctive graph model of train operations are utilised. From numerical investigations the proposed framework and associated techniques are tested and shown to be effective.
Resumo:
There are many interactive media systems, including computer games and media art works, in which it is desirable for music to vary in response to changes in the environment. In this paper we will outline a range of algorithmic techniques that enable music to adapt to such changes, taking into account the need for the music to vary in its expressiveness or mood while remaining coherent and recognisable. We will discuss the approaches which we have arrived at after experience in a range of adaptive music systems over recent years, and draw upon these experiences to inform discussion of relevant considerations and to illustrate the techniques and their effect.
Resumo:
Texture based techniques for visualisation of unsteady vector fields have been applied for the visualisation of a Finite volume model for variably saturated groundwater flow through porous media. This model has been developed by staff in the School of Mathematical Sciences QUT for the study of salt water intrusion into coastal aquifers. This presentation discusses the implementation and effectiveness of the IBFV algorithm in the context of visualisation of the groundwater simulation outputs.
Resumo:
The value of soil evidence in the forensic discipline is well known. However, it would be advantageous if an in-situ method was available that could record responses from tyre or shoe impressions in ground soil at the crime scene. The development of optical fibres and emerging portable NIR instruments has unveiled a potential methodology which could permit such a proposal. The NIR spectral region contains rich chemical information in the form of overtone and combination bands of the fundamental infrared absorptions and low-energy electronic transitions. This region has in the past, been perceived as being too complex for interpretation and consequently was scarcely utilized. The application of NIR in the forensic discipline is virtually non-existent creating a vacancy for research in this area. NIR spectroscopy has great potential in the forensic discipline as it is simple, nondestructive and capable of rapidly providing information relating to chemical composition. The objective of this study is to investigate the ability of NIR spectroscopy combined with Chemometrics to discriminate between individual soils. A further objective is to apply the NIR process to a simulated forensic scenario where soil transfer occurs. NIR spectra were recorded from twenty-seven soils sampled from the Logan region in South-East Queensland, Australia. A series of three high quartz soils were mixed with three different kaolinites in varying ratios and NIR spectra collected. Spectra were also collected from six soils as the temperature of the soils was ramped from room temperature up to 6000C. Finally, a forensic scenario was simulated where the transferral of ground soil to shoe soles was investigated. Chemometrics methods such as the commonly known Principal Component Analysis (PCA), the less well known fuzzy clustering (FC) and ranking by means of multicriteria decision making (MCDM) methodology were employed to interpret the spectral results. All soils were characterised using Inductively Coupled Plasma Optical Emission Spectroscopy and X-Ray Diffractometry. Results were promising revealing NIR combined with Chemometrics is capable of discriminating between the various soils. Peak assignments were established by comparing the spectra of known minerals with the spectra collected from the soil samples. The temperature dependent NIR analysis confirmed the assignments of the absorptions due to adsorbed and molecular bound water. The relative intensities of the identified NIR absorptions reflected the quantitative XRD and ICP characterisation results. PCA and FC analysis of the raw soils in the initial NIR investigation revealed that the soils were primarily distinguished on the basis of their relative quartz and kaolinte contents, and to a lesser extent on the horizon from which they originated. Furthermore, PCA could distinguish between the three kaolinites used in the study, suggesting that the NIR spectral region was sensitive enough to contain information describing variation within kaolinite itself. The forensic scenario simulation PCA successfully discriminated between the ‘Backyard Soil’ and ‘Melcann® Sand’, as well as the two sampling methods employed. Further PCA exploration revealed that it was possible to distinguish between the various shoes used in the simulation. In addition, it was possible to establish association between specific sampling sites on the shoe with the corresponding site remaining in the impression. The forensic application revealed some limitations of the process relating to moisture content and homogeneity of the soil. These limitations can both be overcome by simple sampling practices and maintaining the original integrity of the soil. The results from the forensic scenario simulation proved that the concept shows great promise in the forensic discipline.
Resumo:
Survey-based health research is in a boom phase following an increased amount of health spending in OECD countries and the interest in ageing. A general characteristic of survey-based health research is its diversity. Different studies are based on different health questions in different datasets; they use different statistical techniques; they differ in whether they approach health from an ordinal or cardinal perspective; and they differ in whether they measure short-term or long-term effects. The question in this paper is simple: do these differences matter for the findings? We investigate the effects of life-style choices (drinking, smoking, exercise) and income on six measures of health in the US Health and Retirement Study (HRS) between 1992 and 2002: (1) self-assessed general health status, (2) problems with undertaking daily tasks and chores, (3) mental health indicators, (4) BMI, (5) the presence of serious long-term health conditions, and (6) mortality. We compare ordinal models with cardinal models; we compare models with fixed effects to models without fixed-effects; and we compare short-term effects to long-term effects. We find considerable variation in the impact of different determinants on our chosen health outcome measures; we find that it matters whether ordinality or cardinality is assumed; we find substantial differences between estimates that account for fixed effects versus those that do not; and we find that short-run and long-run effects differ greatly. All this implies that health is an even more complicated notion than hitherto thought, defying generalizations from one measure to the others or one methodology to another.
Resumo:
The following paper presents an evaluation of airborne sensors for use in vegetation management in powerline corridors. Three integral stages in the management process are addressed including, the detection of trees, relative positioning with respect to the nearest powerline and vegetation height estimation. Image data, including multi-spectral and high resolution, are analyzed along with LiDAR data captured from fixed wing aircraft. Ground truth data is then used to establish the accuracy and reliability of each sensor thus providing a quantitative comparison of sensor options. Tree detection was achieved through crown delineation using a Pulse-Coupled Neural Network (PCNN) and morphologic reconstruction applied to multi-spectral imagery. Through testing it was shown to achieve a detection rate of 96%, while the accuracy in segmenting groups of trees and single trees correctly was shown to be 75%. Relative positioning using LiDAR achieved a RMSE of 1.4m and 2.1m for cross track distance and along track position respectively, while Direct Georeferencing achieved RMSE of 3.1m in both instances. The estimation of pole and tree heights measured with LiDAR had a RMSE of 0.4m and 0.9m respectively, while Stereo Matching achieved 1.5m and 2.9m. Overall a small number of poles were missed with detection rates of 98% and 95% for LiDAR and Stereo Matching.
Resumo:
The investigation into the encapsulation of gold nanoparticles (AuNPs) by poly(methyl methacrylate) (PMMA) was undertaken. This was performed by three polymerisation techniques including: grafting PMMA synthesised by reversible addition-fragmentation chain transfer (RAFT) polymerisation to AuNPs, grafting PMMA synthesised by atom transfer radical polymerisation (ATRP) from the surface of functionalised AuNPs and by encapsulation of AuNPs within PMMA latexes produced through photo-initiated oil-in-water (o/w) miniemulsion polymerisation. The grafting of RAFT PMMA to AuNPs was performed by the addition of the RAFT functionalised PMMA to citrate stabilised AuNPs. This was conducted with a range of PMMA of varying molecular weight distribution (MWD) as either the dithioester or thiol end-group functionalities. The RAFT PMMA polymers were characterised by gel permeation chromatography (GPC), ultraviolet-visible (UV-vis), Fourier transform infrared-attenuated total reflectance (FTIR-ATR), Fourier transform Raman (FT-Raman) and proton nuclear magnetic resonance (1H NMR) spectroscopies. The attachment of PMMA to AuNPs showed a tendency for AuNPs to associate with the PMMA structures formed, though significant aggregation occurred. Interestingly, thiol functionalised end-group PMMA showed very little aggregation of AuNPs. The spherical polymer-AuNP structures did not vary in size with variations in PMMA MWD. The PMMA-AuNP structures were characterised using scanning electron microscopy (SEM), transition electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and UV-vis spectroscopy. The surface confined ATRP grafting of PMMA from initiator functionalised AuNPs was polymerised in both homogeneous and heterogeneous media. 11,11’- dithiobis[1-(2-bromo-2-methylpropionyloxy)undecane] (DSBr) was used as the surface-confined initiator and was synthesised in a three step procedure from mercaptoundecanol (MUD). All compounds were characterised by 1H NMR, FTIR-ATR and Raman spectroscopies. The grafting in homogeneous media resulted in amorphous PMMA with significant AuNP aggregation. Individually grafted AuNPs were difficult to separate and characterise, though SEM, TEM, EDAX and UV-vis spectroscopy was used. The heterogeneous polymerisation did not produce grafted AuNPs as characterised by SEM and EDAX. The encapsulation of AuNPs within PMMA latexes through the process of photoinitiated miniemulsion polymerisation was successfully achieved. Initially, photoinitiated miniemulsion polymerisation was conducted as a viable low temperature method of miniemulsion initiation. This proved successful producing a stable PMMA with good conversion efficiency and narrow particle size distribution (PSD). This is the first report of such a system. The photo-initiated technique was further optimised and AuNPs were included into the miniemulsion. AuNP encapsulation was very effective, producing reproducible AuNP encapsulated PMMA latexes. Again, this is the first reported case of this. The latexes were characterised by TEM, SEM, GPC, gravimetric analysis and dynamic light scattering (DLS).
Resumo:
Many studies in the area of project management and social networks have identified the significance of project knowledge transfer within and between projects. However, only few studies have examined the intra- and inter-projects knowledge transfer activities. Knowledge in projects can be transferred via face-to-face interactions on the one hand, and via IT-based tools on the other. Although companies have allocated many resources to the IT tools, it has been found that they are not always effectively utilised, and people prefer to look for knowledge using social face-to-face interactions. This paper explores how to effectively leverage two alternative knowledge transfer techniques, face-to-face and IT-based tools to facilitate knowledge transfer and enhance knowledge creation for intra- and inter-project knowledge transfer. The paper extends the previous research on the relationships between and within teams by examining the project’s external and internal knowledge networks concurrently. Social network qualitative analysis, using a case study within a small-medium enterprise, was used to examine the knowledge transfer activities within and between projects, and to investigate knowledge transfer techniques. This paper demonstrates the significance of overlapping employees working simultaneously on two or more projects and their impact on facilitating knowledge transfer between projects within a small/medium organisation. This research is also crucial to gaining better understanding of different knowledge transfer techniques used for intra- and inter-project knowledge exchange. The research provides recommendations on how to achieve better knowledge transfer within and between projects in order to fully utilise a project’s knowledge and achieve better project performance.
Resumo:
Automatic recognition of people is an active field of research with important forensic and security applications. In these applications, it is not always possible for the subject to be in close proximity to the system. Voice represents a human behavioural trait which can be used to recognise people in such situations. Automatic Speaker Verification (ASV) is the process of verifying a persons identity through the analysis of their speech and enables recognition of a subject at a distance over a telephone channel { wired or wireless. A significant amount of research has focussed on the application of Gaussian mixture model (GMM) techniques to speaker verification systems providing state-of-the-art performance. GMM's are a type of generative classifier trained to model the probability distribution of the features used to represent a speaker. Recently introduced to the field of ASV research is the support vector machine (SVM). An SVM is a discriminative classifier requiring examples from both positive and negative classes to train a speaker model. The SVM is based on margin maximisation whereby a hyperplane attempts to separate classes in a high dimensional space. SVMs applied to the task of speaker verification have shown high potential, particularly when used to complement current GMM-based techniques in hybrid systems. This work aims to improve the performance of ASV systems using novel and innovative SVM-based techniques. Research was divided into three main themes: session variability compensation for SVMs; unsupervised model adaptation; and impostor dataset selection. The first theme investigated the differences between the GMM and SVM domains for the modelling of session variability | an aspect crucial for robust speaker verification. Techniques developed to improve the robustness of GMMbased classification were shown to bring about similar benefits to discriminative SVM classification through their integration in the hybrid GMM mean supervector SVM classifier. Further, the domains for the modelling of session variation were contrasted to find a number of common factors, however, the SVM-domain consistently provided marginally better session variation compensation. Minimal complementary information was found between the techniques due to the similarities in how they achieved their objectives. The second theme saw the proposal of a novel model for the purpose of session variation compensation in ASV systems. Continuous progressive model adaptation attempts to improve speaker models by retraining them after exploiting all encountered test utterances during normal use of the system. The introduction of the weight-based factor analysis model provided significant performance improvements of over 60% in an unsupervised scenario. SVM-based classification was then integrated into the progressive system providing further benefits in performance over the GMM counterpart. Analysis demonstrated that SVMs also hold several beneficial characteristics to the task of unsupervised model adaptation prompting further research in the area. In pursuing the final theme, an innovative background dataset selection technique was developed. This technique selects the most appropriate subset of examples from a large and diverse set of candidate impostor observations for use as the SVM background by exploiting the SVM training process. This selection was performed on a per-observation basis so as to overcome the shortcoming of the traditional heuristic-based approach to dataset selection. Results demonstrate the approach to provide performance improvements over both the use of the complete candidate dataset and the best heuristically-selected dataset whilst being only a fraction of the size. The refined dataset was also shown to generalise well to unseen corpora and be highly applicable to the selection of impostor cohorts required in alternate techniques for speaker verification.