87 resultados para Stream ecosystems
Resumo:
In this Part 2 attention is turned towards the legal arrangements in nation states for managing wetlands. These national arrangements have effect within the international arrangements already mentioned and any regional arrangements that are relevant. However, each national system is a reflection of its own historical, cultural, political and constitutional background. It is the purpose of this Part 2 to review and assess the national approaches to wetlands management. This involves an analysis of a range of instruments. These are: constitutional rules; strategic rules; regulatory rules; and management rules. Each of these sets of rules performs different functions, assumes different forms and is differentially capable of enforcement.
Resumo:
An initialisation process is a key component in modern stream cipher design. A well-designed initialisation process should ensure that each key-IV pair generates a different key stream. In this paper, we analyse two ciphers, A5/1 and Mixer, for which this does not happen due to state convergence. We show how the state convergence problem occurs and estimate the effective key-space in each case.
Resumo:
The Upper Roper River is one of the Australia’s unique tropical rivers which have been largely untouched by development. The Upper Roper River catchment comprises the sub-catchments of the Waterhouse River and Roper Creek, the two tributaries of the Roper River. There is a complex geological setting with different aquifer types. In this seasonal system, close interaction between surface water and groundwater contributes to both streamflow and sustaining ecosystems. The interaction is highly variable between seasons. A conceptual hydrogeological model was developed to investigate the different hydrological processes and geochemical parameters, and determine the baseline characteristics of water resources of this pristine catchment. In the catchment, long term average rainfall is around 850 mm and is summer dominant which significantly influences the total hydrological system. The difference between seasons is pronounced, with high rainfall up to 600 mm/month in the wet season, and negligible rainfall in the dry season. Canopy interception significantly reduces the amount of effective rainfall because of the native vegetation cover in the pristine catchment. Evaporation exceeds rainfall the majority of the year. Due to elevated evaporation and high temperature in the tropics, at least 600 mm of annual rainfall is required to generate potential recharge. Analysis of 120 years of rainfall data trend helped define “wet” and “dry periods”: decreasing trend corresponds to dry periods, and increasing trend to wet periods. The period from 1900 to 1970 was considered as Dry period 1, when there were years with no effective rainfall, and if there was, the intensity of rainfall was around 300 mm. The period 1970 – 1985 was identified as the Wet period 2, when positive effective rainfall occurred in almost every year, and the intensity reached up to 700 mm. The period 1985 – 1995 was the Dry period 2, with similar characteristics as Dry period 1. Finally, the last decade was the Wet period 2, with effective rainfall intensity up to 800 mm. This variability in rainfall over decades increased/decreased recharge and discharge, improving/reducing surface water and groundwater quantity and quality in different wet and dry periods. The stream discharge follows the rainfall pattern. In the wet season, the aquifer is replenished, groundwater levels and groundwater discharge are high, and surface runoff is the dominant component of streamflow. Waterhouse River contributes two thirds and Roper Creek one third to Roper River flow. As the dry season progresses, surface runoff depletes, and groundwater becomes the main component of stream flow. Flow in Waterhouse River is negligible, the Roper Creek dries up, but the Roper River maintains its flow throughout the year. This is due to the groundwater and spring discharge from the highly permeable Tindall Limestone and tufa aquifers. Rainfall seasonality and lithology of both the catchment and aquifers are shown to influence water chemistry. In the wet season, dilution of water bodies by rainwater is the main process. In the dry season, when groundwater provides baseflow to the streams, their chemical composition reflects lithology of the aquifers, in particular the karstic areas. Water chemistry distinguishes four types of aquifer materials described as alluvium, sandstone, limestone and tufa. Surface water in the headwaters of the Waterhouse River, the Roper Creek and their tributaries are freshwater, and reflect the alluvium and sandstone aquifers. At and downstream of the confluence of the Roper River, river water chemistry indicates the influence of rainfall dilution in the wet season, and the signature of the Tindall Limestone and tufa aquifers in the dry. Rainbow Spring on the Waterhouse River and Bitter Spring on the Little Roper River (known as Roper Creek at the headwaters) discharge from the Tindall Limestone. Botanic Walk Spring and Fig Tree Spring discharge into the Roper River from tufa. The source of water was defined based on water chemical composition of the springs, surface and groundwater. The mechanisms controlling surface water chemistry were examined to define the dominance of precipitation, evaporation or rock weathering on the water chemical composition. Simple water balance models for the catchment have been developed. The important aspects to be considered in water resource planning of this total system are the naturally high salinity in the region, especially the downstream sections, and how unpredictable climate variation may impact on the natural seasonal variability of water volumes and surface-subsurface interaction.
Resumo:
Investigates the use of temporal lip information, in conjunction with speech information, for robust, text-dependent speaker identification. We propose that significant speaker-dependent information can be obtained from moving lips, enabling speaker recognition systems to be highly robust in the presence of noise. The fusion structure for the audio and visual information is based around the use of multi-stream hidden Markov models (MSHMM), with audio and visual features forming two independent data streams. Recent work with multi-modal MSHMMs has been performed successfully for the task of speech recognition. The use of temporal lip information for speaker identification has been performed previously (T.J. Wark et al., 1998), however this has been restricted to output fusion via single-stream HMMs. We present an extension to this previous work, and show that a MSHMM is a valid structure for multi-modal speaker identification
Resumo:
This study uses and extends the theory of planned behavior to develop and empirically test a model of the social condition of riparian behavior. The theory of planned behavior is applicable to understanding the complexity of social conditions underlying waterway health. SEM identified complex interrelationships between variables. Aspects of respondent’s beliefs impacted on their stated intentions and behavior and were partially mediated by perceived behavioral control. The way in which people used waterways also influenced their actions. This study adds to theoretical knowledge through the development of scales that measure aspects of the social condition of waterways and examines their interrelationships for the first time. It extends the theory of planned behaviour through the incorporation of an objective measure of participants knowledge of waterway health. It also has practical implications for managers involved in sustaining and improving the social condition of river ecosystems.
Resumo:
Australian climate, soils and agricultural management practices are significantly different from those of the northern hemisphere nations. Consequently, experimental data on greenhouse gas production from European and North American agricultural soils and its interpretation are unlikely to be directly applicable to Australian systems. A programme of studies of non-CO2 greenhouse gas emissions from agriculture has been established that is designed to reduce uncertainty of non-CO2 greenhouse gas emissions in the Australian National Greenhouse Gas Inventory and provide outputs that will enable better on-farm management practices for reducing non-CO2 greenhouse gas emissions, particularly nitrous oxide. The systems being examined and their locations are irrigated pasture (Kyabram Victoria), irrigated cotton (Narrabri, NSW), irrigated maize (Griffith, NSW), rain-fed wheat (Rutherglen, Victoria) and rain-fed wheat (Cunderdin, WA). The field studies include treatments with and without fertilizer addition, stubble burning versus stubble retention, conventional cultivation versus direct drilling and crop rotation to determine emission factors and treatment possibilities for best management options. The data to date suggest that nitrous oxide emissions from nitrogen fertilizer, applied to irrigated dairy pastures and rain-fed winter wheat, appear much lower than the average of northern hemisphere grain and pasture studies. More variable emissions have been found in studies of irrigated cotton/vetch/wheat rotation and substantially higher emissions from irrigated maize.
Resumo:
Sfinks is a shift register based stream cipher designed for hardware implementation. The initialisation state update function is different from the state update function used for keystream generation. We demonstrate state convergence during the initialisation process, even though the individual components used in the initialisation are one-to-one. However, the combination of these components is not one-to-one.
Resumo:
Existing algebraic analyses of the ZUC cipher indicate that the cipher should be secure against algebraic attacks. In this paper, we present an alternative algebraic analysis method for the ZUC stream cipher, where a combiner is used to represent the nonlinear function and to derive equations representing the cipher. Using this approach, the initial states of ZUC can be recovered from 2^97 observed words of keystream, with a complexity of 2^282 operations. This method is more successful when applied to a modified version of ZUC, where the number of output words per clock is increased. If the cipher outputs 120 bits of keystream per clock, the attack can succeed with 219 observed keystream bits and 2^47 operations. Therefore, the security of ZUC against algebraic attack could be significantly reduced if its throughput was to be increased for efficiency.
Resumo:
Both the SSS and SOBER-t32 stream cipher designs use a single word-based shift register and a nonlinear filter function to produce keystream. In this paper we show that the algebraic attack method previously applied to SOBER-t32 is prevented from succeeding on SSS by the use of the key dependent substitution box (SBox) in the nonlinear filter of SSS. Additional assumptions and modifications to the SSS cipher in an attempt to enable algebraic analysis result in other difficulties that also render the algebraic attack infeasible. Based on these results, we conclude that a well chosen key-dependent substitution box used in the nonlinear filter of the stream cipher provides resistance against such algebraic attacks.
Resumo:
The convergence of Internet marketplaces and service-oriented architectures has spurred the growth of Web service ecosystems. This paper articulates a vision for Web service ecosystems, discusses early manifestations of this vision, and presents a unifying architecture to support the emergence of larger and more sophisticated ecosystems
Resumo:
This paper presents an analysis of the stream cipher Mixer, a bit-based cipher with structural components similar to the well-known Grain cipher and the LILI family of keystream generators. Mixer uses a 128-bit key and 64-bit IV to initialise a 217-bit internal state. The analysis is focused on the initialisation function of Mixer and shows that there exist multiple key-IV pairs which, after initialisation, produce the same initial state, and consequently will generate the same keystream. Furthermore, if the number of iterations of the state update function performed during initialisation is increased, then the number of distinct initial states that can be obtained decreases. It is also shown that there exist some distinct initial states which produce the same keystream, resulting in a further reduction of the effective key space
Resumo:
While the Ramsar Convention for the Protection of Wetlands of International Importance was the first habitat-based treaty, much of the recent focus of international attention in the area of freshwater has been on the regulation of watercourses. Attention is only beginning to be given to the interconnectedness of freshwater, habitats and ecosystems. This chapter explores and analyses the context, structure and substantive rules for the couservation and managemet of freshwater, habitats and ecosystems across the complex range of multilateral environmental agreements.
Resumo:
Trivium is a keystream generator for a binary additive synchronous stream cipher. It was selected in the final portfolio for the Profile 2 category of the eSTREAM project. The keystream generator is constructed using bit- based shift registers. In this paper we present an alternate representation of Trivium using word-based shift registers, with a word size of three bits. This representation is useful for determining cycles of internal state values. Under this representation it is clear that the state space can be partitioned into subspaces and that over some of these subspaces the state update function is effectively linear. The role of the initialization process is critical in ensuring the states used for generating keystream are updated nonlinearly at some point, as the state update function alone does not provide this.