82 resultados para Steering-gear
Resumo:
Path planning and trajectory design for autonomous underwater vehicles (AUVs) is of great importance to the oceanographic research community because automated data collection is becoming more prevalent. Intelligent planning is required to maneuver a vehicle to high-valued locations to perform data collection. In this paper, we present algorithms that determine paths for AUVs to track evolving features of interest in the ocean by considering the output of predictive ocean models. While traversing the computed path, the vehicle provides near-real-time, in situ measurements back to the model, with the intent to increase the skill of future predictions in the local region. The results presented here extend prelim- inary developments of the path planning portion of an end-to-end autonomous prediction and tasking system for aquatic, mobile sensor networks. This extension is the incorporation of multiple vehicles to track the centroid and the boundary of the extent of a feature of interest. Similar algorithms to those presented here are under development to consider additional locations for multiple types of features. The primary focus here is on algorithm development utilizing model predictions to assist in solving the motion planning problem of steering an AUV to high-valued locations, with respect to the data desired. We discuss the design technique to generate the paths, present simulation results and provide experimental data from field deployments for tracking dynamic features by use of an AUV in the Southern California coastal ocean.
Resumo:
Data collection using Autonomous Underwater Vehicles (AUVs) is increasing in importance within the oceano- graphic research community. Contrary to traditional moored or static platforms, mobile sensors require intelligent planning strategies to manoeuvre through the ocean. However, the ability to navigate to high-value locations and collect data with specific scientific merit is worth the planning efforts. In this study, we examine the use of ocean model predictions to determine the locations to be visited by an AUV, and aid in planning the trajectory that the vehicle executes during the sampling mission. The objectives are: a) to provide near-real time, in situ measurements to a large-scale ocean model to increase the skill of future predictions, and b) to utilize ocean model predictions as a component in an end-to-end autonomous prediction and tasking system for aquatic, mobile sensor networks. We present an algorithm designed to generate paths for AUVs to track a dynamically evolving ocean feature utilizing ocean model predictions. This builds on previous work in this area by incorporating the predicted current velocities into the path planning to assist in solving the 3-D motion planning problem of steering an AUV between two selected locations. We present simulation results for tracking a fresh water plume by use of our algorithm. Additionally, we present experimental results from field trials that test the skill of the model used as well as the incorporation of the model predictions into an AUV trajectory planner. These results indicate a modest, but measurable, improvement in surfacing error when the model predictions are incorporated into the planner.
Resumo:
Trajectory design for Autonomous Underwater Vehicles (AUVs) is of great importance to the oceanographic research community. Intelligent planning is required to maneuver a vehicle to high-valued locations for data collection. We consider the use of ocean model predictions to determine the locations to be visited by an AUV, which then provides near-real time, in situ measurements back to the model to increase the skill of future predictions. The motion planning problem of steering the vehicle between the computed waypoints is not considered here. Our focus is on the algorithm to determine relevant points of interest for a chosen oceanographic feature. This represents a first approach to an end to end autonomous prediction and tasking system for aquatic, mobile sensor networks. We design a sampling plan and present experimental results with AUV retasking in the Southern California Bight (SCB) off the coast of Los Angeles.
Resumo:
It’s a pleasure for me to be penning my first President’s Message for the AITPM Newsletter. I am eagerly looking forward to serving the Institute and members over the coming couple of years. First though, I’d like to congratulate Andrew Hulse for steering the good ship AITPM over the past two years, bringing so many initiatives to the fore, including the Certified Transport Planner (CTP), stronger ties with other organisations and agencies such as IPENZ and Austroads, mutually beneficial sponsorship arrangements, and sharing his enthusiasm towards the Thunderbirds. Personally and largely thanks to my kids’ domination of the TV I’m a bit keener on the other great British sixties sci-fi classic, Doctor Who. Maybe we can generate a “favourite Doctor” dialogue in the Newsletter.
Resumo:
The combination of alcohol and driving is a major health and economic burden to most communities in industrialised countries. The total cost of crashes for Australia in 1996 was estimated at approximately 15 billion dollars and the costs for fatal crashes were about 3 billion dollars (BTE, 2000). According to the Bureau of Infrastructure, Transport and Regional Development and Local Government (2009; BITRDLG) the overall cost of road fatality crashes for 2006 $3.87 billion, with a single fatal crash costing an estimated $2.67 million. A major contributing factor to crashes involving serious injury is alcohol intoxication while driving. It is a well documented fact that consumption of liquor impairs judgment of speed, distance and increases involvement in higher risk behaviours (Waller, Hansen, Stutts, & Popkin, 1986a; Waller et al., 1986b). Waller et al. (1986a; b) asserts that liquor impairs psychomotor function and therefore renders the driver impaired in a crisis situation. This impairment includes; vision (degraded), information processing (slowed), steering, and performing two tasks at once in congested traffic (Moskowitz & Burns, 1990). As BAC levels increase the risk of crashing and fatality increase exponentially (Department of Transport and Main Roads, 2009; DTMR). According to Compton et al. (2002) as cited in the Department of Transport and Main Roads (2009), crash risk based on probability, is five times higher when the BAC is 0.10 compared to a BAC of 0.00. The type of injury patterns sustained also tends to be more severe when liquor is involved, especially with injuries to the brain (Waller et al., 1986b). Single and Rohl (1997) reported that 30% of all fatal crashes in Australia where alcohol involvement was known were associated with Breadth Analysis Content (BAC) above the legal limit of 0.05gms/100ml. Alcohol related crashes therefore contributes to a third of the total cost of fatal crashes (i.e. $1 billion annually) and crashes where alcohol is involved are more likely to result in death or serious injury (ARRB Transport Research, 1999). It is a major concern that a drug capable of impairment such as is the most available and popular drug in Australia (Australian Institute of Health and Welfare, 2007; AIHW). According to the AIHW (2007) 89.9% of the approximately 25,000 Australians over the age of 14 surveyed had consumed at some point in time, and 82.9% had consumed liquor in the previous year. This study found that 12.1% of individuals admitted to driving a motor vehicle whilst intoxicated. In general males consumed more liquor in all age groups. In Queensland there were 21503 road crashes in 2001, involving 324 fatalities and the largest contributing factor was alcohol and or drugs (Road Traffic Report, 2001). 23438 road crashes in 2004, involving 289 fatalities and the largest contributing factor was alcohol and or drugs (DTMR, 2009). Although a number of measures such as random breath testing have been effective in reducing the road toll (Watson, Fraine & Mitchell, 1995) the recidivist drink driver remains a serious problem. These findings were later supported with research by Leal, King, and Lewis (2006). This Queensland study found that of the 24661 drink drivers intercepted in 2004, 3679 (14.9%) were recidivists with multiple drink driving convictions in the previous three years covered (Leal et al., 2006). The legal definition of the term “recidivist” is consistent with the Transport Operations (Road Use Management) Act (1995) and is assigned to individuals who have been charged with multiple drink driving offences in the previous five years. In Australia relatively little attention has been given to prevention programs that target high-risk repeat drink drivers. However, over the last ten years a rehabilitation program specifically designed to reduce recidivism among repeat drink drivers has been operating in Queensland. The program, formally known as the “Under the Limit” drink driving rehabilitation program (UTL) was designed and implemented by the research team at the Centre for Accident Research and Road Safety in Queensland with funding from the Federal Office of Road Safety and the Institute of Criminology (see Sheehan, Schonfeld & Davey, 1995). By 2009 over 8500 drink-drivering offenders had been referred to the program (Australian Institute of Crime, 2009).
Resumo:
Estimating and predicting degradation processes of engineering assets is crucial for reducing the cost and insuring the productivity of enterprises. Assisted by modern condition monitoring (CM) technologies, most asset degradation processes can be revealed by various degradation indicators extracted from CM data. Maintenance strategies developed using these degradation indicators (i.e. condition-based maintenance) are more cost-effective, because unnecessary maintenance activities are avoided when an asset is still in a decent health state. A practical difficulty in condition-based maintenance (CBM) is that degradation indicators extracted from CM data can only partially reveal asset health states in most situations. Underestimating this uncertainty in relationships between degradation indicators and health states can cause excessive false alarms or failures without pre-alarms. The state space model provides an efficient approach to describe a degradation process using these indicators that can only partially reveal health states. However, existing state space models that describe asset degradation processes largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires that failures and inspections only happen at fixed intervals. The discrete state assumption entails discretising continuous degradation indicators, which requires expert knowledge and often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This research proposes a Gamma-based state space model that does not have discrete time, discrete state, linear and Gaussian assumptions to model partially observable degradation processes. Monte Carlo-based algorithms are developed to estimate model parameters and asset remaining useful lives. In addition, this research also develops a continuous state partially observable semi-Markov decision process (POSMDP) to model a degradation process that follows the Gamma-based state space model and is under various maintenance strategies. Optimal maintenance strategies are obtained by solving the POSMDP. Simulation studies through the MATLAB are performed; case studies using the data from an accelerated life test of a gearbox and a liquefied natural gas industry are also conducted. The results show that the proposed Monte Carlo-based EM algorithm can estimate model parameters accurately. The results also show that the proposed Gamma-based state space model have better fitness result than linear and Gaussian state space models when used to process monotonically increasing degradation data in the accelerated life test of a gear box. Furthermore, both simulation studies and case studies show that the prediction algorithm based on the Gamma-based state space model can identify the mean value and confidence interval of asset remaining useful lives accurately. In addition, the simulation study shows that the proposed maintenance strategy optimisation method based on the POSMDP is more flexible than that assumes a predetermined strategy structure and uses the renewal theory. Moreover, the simulation study also shows that the proposed maintenance optimisation method can obtain more cost-effective strategies than a recently published maintenance strategy optimisation method by optimising the next maintenance activity and the waiting time till the next maintenance activity simultaneously.
Resumo:
Suburbanisation has been internationally a major phenomenon in the last decades. Suburb-to-suburb routes are nowadays the most widespread road journeys; and this resulted in an increment of distances travelled, particularly on faster suburban highways. The design of highways tends to over-simplify the driving task and this can result in decreased alertness. Driving behaviour is consequently impaired and drivers are then more likely to be involved in road crashes. This is particularly dangerous on highways where the speed limit is high. While effective countermeasures to this decrement in alertness do not currently exist, the development of in-vehicle sensors opens avenues for monitoring driving behaviour in real-time. The aim of this study is to evaluate in real-time the level of alertness of the driver through surrogate measures that can be collected from in-vehicle sensors. Slow EEG activity is used as a reference to evaluate driver's alertness. Data are collected in a driving simulator instrumented with an eye tracking system, a heart rate monitor and an electrodermal activity device (N=25 participants). Four different types of highways (driving scenario of 40 minutes each) are implemented through the variation of the road design (amount of curves and hills) and the roadside environment (amount of buildings and traffic). We show with Neural Networks that reduced alertness can be detected in real-time with an accuracy of 92% using lane positioning, steering wheel movement, head rotation, blink frequency, heart rate variability and skin conductance level. Such results show that it is possible to assess driver's alertness with surrogate measures. Such methodology could be used to warn drivers of their alertness level through the development of an in-vehicle device monitoring in real-time drivers' behaviour on highways, and therefore it could result in improved road safety.
Resumo:
This protocol represents an attempt to assist in the instruction of teamwork assessment for first-year students across QUT. We anticipate that teaching staff will view this protocol as a generic resource in teamwork instruction, processes and evaluation. Teamwork has been acknowledged as a problematic practice at QUT while existing predominantly in importance amongst graduate capabilities for all students at this institution. This protocol is not an extensive document on the complexities and dynamics of teamwork processes, but instead presents itself as a set of best practice guidelines and recommendations to assist in team design, development, management, support and assessment. It is recommended that this protocol be progressively implemented across QUT, not only to attain teamwork teaching consistency, but to address and deal with the misconceptions and conflict around the importance of the teamwork experience. The authors acknowledge the extensive input and contributions from a Teamwork Steering Committee selected from academic staff and administrative members across the institution. As well, we welcome feedback and suggestions to both fine tune and make inclusive those strategies that staff believe add to optimal teamwork outcomes.
Resumo:
Asset health inspections can produce two types of indicators: (1) direct indicators (e.g. the thickness of a brake pad, and the crack depth on a gear) which directly relate to a failure mechanism; and (2) indirect indicators (e.g. the indicators extracted from vibration signals and oil analysis data) which can only partially reveal a failure mechanism. While direct indicators enable more precise references to asset health condition, they are often more difficult to obtain than indirect indicators. The state space model provides an efficient approach to estimating direct indicators by using indirect indicators. However, existing state space models to estimate direct indicators largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires fixed inspection intervals. The discrete state assumption entails discretising continuous degradation indicators, which often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This paper proposes a state space model without these assumptions. Monte Carlo-based algorithms are developed to estimate the model parameters and the remaining useful life. These algorithms are evaluated for performance using numerical simulations through MATLAB. The result shows that both the parameters and the remaining useful life are estimated accurately. Finally, the new state space model is used to process vibration and crack depth data from an accelerated test of a gearbox. During this application, the new state space model shows a better fitness result than the state space model with linear and Gaussian assumption.
Resumo:
Driving is a vigilance task, requiring sustained attention to maintain performance and avoid crashes. Hypovigilance (i.e., marked reduction in vigilance) while driving manifests as poor driving performance and is commonly attributed to fatigue (Dinges, 1995). However, poor driving performance has been found to be more frequent when driving in monotonous road environments, suggesting that monotony plays a role in generating hypovigilance (Thiffault & Bergeron, 2003b). Research to date has tended to conceptualise monotony as a uni-dimensional task characteristic, typically used over a prolonged period of time to facilitate other factors under investigation, most notably fatigue. However, more often than not, more than one exogenous factor relating to the task or operating environment is manipulated to vary or generate monotony (Mascord & Heath, 1992). Here we aimed to explore whether monotony is a multi-dimensional construct that is determined by characteristics of both the task proper and the task environment. The general assumption that monotony is a task characteristic used solely to elicit hypovigilance or poor performance related to fatigue appears to have led to there being little rigorous investigation into the exact nature of the relationship. While the two concepts are undoubtedly linked, the independent effect of monotony on hypovigilance remains largely ignored. Notwithstanding, there is evidence that monotony effects can emerge very early in vigilance tasks and are not necessarily accompanied by fatigue (see Meuter, Rakotonirainy, Johns, & Wagner, 2005). This phenomenon raises a largely untested, empirical question explored in two studies: Can hypovigilance emerge as a consequence of task and/or environmental monotony, independent of time on task and fatigue? In Study 1, using a short computerised vigilance task requiring responses to be withheld to infrequent targets, we explored the differential impacts of stimuli and task demand manipulations on the development of a monotonous context and the associated effects on vigilance performance (as indexed by respone errors and response times), independent of fatigue and time on task. The role of individual differences (sensation seeking, extroversion and cognitive failures) in moderating monotony effects was also considered. The results indicate that monotony affects sustained attention, with hypovigilance and associated performance worse in monotonous than in non-monotonous contexts. Critically, performance decrements emerged early in the task (within 4.3 minutes) and remained consistent over the course of the experiment (21.5 minutes), suggesting that monotony effects can operate independent of time on task and fatigue. A combination of low task demands and low stimulus variability form a monotonous context characterised by hypovigilance and poor task performance. Variations to task demand and stimulus variability were also found to independently affect performance, suggesting that monotony is a multi-dimensional construct relating to both task monotony (associated with the task itself) and environmental monotony (related to characteristics of the stimulus). Consequently, it can be concluded that monotony is multi-dimensional and is characterised by low variability in stimuli and/or task demands. The proposition that individual differences emerge under conditions of varying monotony with high sensation seekers and/or extroverts performing worse in monotonous contexts was only partially supported. Using a driving simulator, the findings of Study 1 were extended to a driving context to identify the behavioural and psychophysiological indices of monotony-related hypovigilance associated with variations to road design and road side scenery (Study 2). Supporting the proposition that monotony is a multi-dimensional construct, road design variability emerged as a key moderating characteristic of environmental monotony, resulting in poor driving performance indexed by decrements in steering wheel measures (mean lateral position). Sensation seeking also emerged as a moderating factor, where participants high in sensation seeking tendencies displayed worse driving behaviour in monotonous conditions. Importantly, impaired driving performance was observed within 8 minutes of commencing the driving task characterised by environmental monotony (low variability in road design) and was not accompanied by a decline in psychophysiological arousal. In addition, no subjective declines in alertness were reported. With fatigue effects associated with prolonged driving (van der Hulst, Meijman, & Rothengatter, 2001) and indexed by drowsiness, this pattern of results indicates that monotony can affect driver vigilance, independent of time on task and fatigue. Perceptual load theory (Lavie, 1995, 2005) and mindlessness theory (Robertson, Manly, Andrade, Baddley, & Yiend, 1997) provide useful theoretical frameworks for explaining and predicting monotony effects by positing that the low load (of task and/or stimuli) associated with a monotonous task results in spare attentional capacity which spills over involuntarily, resulting in the processing of task-irrelevant stimuli or task unrelated thoughts. That is, individuals – even when not fatigued - become easily distracted when performing a highly monotonous task, resulting in hypovigilance and impaired performance. The implications for road safety, including the likely effectiveness of fatigue countermeasures to mitigate monotony-related driver hypovigilance are discussed.
Resumo:
Background Apart from helmets, little is known about the effectiveness of motorcycle protective clothing in reducing injuries in crashes. The study aimed to quantify the association between usage of motorcycle clothing and injury in crashes. Methods and findings Cross-sectional analytic study. Crashed motorcyclists (n = 212, 71% of identified eligible cases) were recruited through hospitals and motorcycle repair services. Data was obtained through structured face-to-face interviews. The main outcome was hospitalization and motorcycle crash-related injury. Poisson regression was used to estimate relative risk (RR) and 95% confidence intervals for injury adjusting for potential confounders. Results Motorcyclists were significantly less likely to be admitted to hospital if they crashed wearing motorcycle jackets (RR = 0.79, 95% CI: 0.69–0.91), pants (RR = 0.49, 95% CI: 0.25–0.94), or gloves (RR = 0.41, 95% CI: 0.26–0.66). When garments included fitted body armour there was a significantly reduced risk of injury to the upper body (RR = 0.77, 95% CI: 0.66–0.89), hands and wrists (RR = 0.55, 95% CI: 0.38–0.81), legs (RR = 0.60, 95% CI: 0.40–0.90), feet and ankles (RR = 0.54, 95% CI: 0.35–0.83). Non-motorcycle boots were also associated with a reduced risk of injury compared to shoes or joggers (RR = 0.46, 95% CI: 0.28–0.75). No association between use of body armour and risk of fracture injuries was detected. A substantial proportion of motorcycle designed gloves (25.7%), jackets (29.7%) and pants (28.1%) were assessed to have failed due to material damage in the crash. Conclusions Motorcycle protective clothing is associated with reduced risk and severity of crash related injury and hospitalization, particularly when fitted with body armour. The proportion of clothing items that failed under crash conditions indicates a need for improved quality control. While mandating usage of protective clothing is not recommended, consideration could be given to providing incentives for usage of protective clothing, such as tax exemptions for safety gear, health insurance premium reductions and rebates.
Resumo:
There has been an abundance of education reform recommendations for teaching and teacher education as a result of national and international reviews. A major criticism in education is the lack of connection between theory and practice (or praxis), that is, how the learning at university informs practical applications for teaching in the classroom. This paper presents the Teacher Education Done Differently (TEDD) project, funded by the Department of Education, Employment and Workplace Relations (DEEWR). It outlines how it has re-structured its offering of coursework in a Bachelor of Education (BEd) held at an Australian university campus to embrace praxis. Establishing partnerships was crucial to the development of this project. TEDD initially gathered a reference group of educators, which included university staff, school executives, and other key stakeholders, who formed an Advisory Group and Steering Committee. These groups formed a collective vision for TEDD and aimed to motivate others, foster team work, and create leadership roles that would benefit all stakeholders. The paper presents how university units changed to include a stronger praxis development for preservice teachers. Preservice teachers take their learning into schools within lead-up programs such as Ed Start for practicum I, III, and IV; Science in Schools, and Studies of Society and its Environment (SOSE). Findings showed that opportunities for undertaking additional real-world experiences were perceived to assist the preservice teachers’ praxis development. Additional school-based experiences as lead-up days for field experiences and as avenues for exploring the teaching of specific subject areas presented as an opportunity for enhancing education for all.
Resumo:
Organizations today engage in various forms of alliances to manage their existing business processes or to diversify into new processes to sustain their competitive positions. Many of today’s alliances use the IT resources as their backbone. The results of these alliances are collaborative organizational structures with little or no ownership stakes between the parties. The emergence of Web 2.0 tools is having a profound effect on the nature and form of these alliance structures. These alliances heavily depend on and make radical use of the IT resources in a collaborative environment. This situation requires a deeper understanding of the governance of these IT resources to ensure the sustainability of the collaborative organizational structures. This study first suggests the types of IT governance structures required for collaborative organizational structures. Semi-structured interviews with senior executives who operate in such alliances reveal that co-created IT governance structures are necessary. Such structures include co-created IT-steering committees, co-created operational committees, and inter-organizational performance management and communication systems. The findings paved the way for the development of a model for understanding approaches to governing IT and evaluating the effectiveness for such governance mechanisms in today’s IT dependent alliances. This study presents a sustainable IT-related capabilities approach to assessing the effectiveness of suggested IT governance structures for collaborative alliances. The findings indicate a favourable association between organizations IT governance efforts and their ability to sustain their capabilities to leverage their IT resources. These IT-related capabilities also relate to measures business value at the process and firm level. This makes it possible to infer that collaborative organizations’ IT governance efforts contribute to business value.
Resumo:
Digital human modeling (DHM), as a convenient and cost-effective tool, is increasingly incorporated into product and workplace design. In product design, it is predominantly used for the development of driver-vehicle systems. Most digital human modeling software tools, such as JACK, RAMSIS and DELMIA HUMANBUILDER provide functions to predict posture and positions for drivers with selected anthropometry according to SAE (Society of Automotive Engineers) Recommended Practices and other ergonomics guidelines. However, few studies have presented 2nd row passenger postural information, and digital human modeling of these passenger postures cannot be performed directly using the existing driver posture prediction functions. In this paper, the significant studies related to occupant posture and modeling were reviewed and a framework of determinants of driver vs. 2nd row occupant posture modeling was extracted. The determinants which are regarded as input factors for posture modeling include target population anthropometry, vehicle package geometry and seat design variables as well as task definitions. The differences between determinants of driver and 2nd row occupant posture models are significant, as driver posture modeling is primarily based on the position of the foot on the accelerator pedal (accelerator actuation point AAP, accelerator heel point AHP) and the hands on the steering wheel (steering wheel centre point A-Point). The objectives of this paper are aimed to investigate those differences between driver and passenger posture, and to supplement the existing parametric model for occupant posture prediction. With the guide of the framework, the associated input parameters of occupant digital human models of both driver and second row occupant will be identified. Beyond the existing occupant posture models, for example a driver posture model could be modified to predict second row occupant posture, by adjusting the associated input parameters introduced in this paper. This study combines results from a literature review and the theoretical modeling stage of a second row passenger posture prediction model project.
Resumo:
The Australian income tax regime is generally regarded as a mechanism by which the Federal Government raises revenue, with much of the revenue raised used to support public spending programs. A prime example of this type of spending program is health care. However, a government may also decide that the private sector should provide a greater share of the nation's health care. To achieve such a policy it can bring about change through positive regulation, or it can use the taxation regime, via tax expenditures, not to raise revenue but to steer or influence individuals in its desired direction. When used for this purpose, tax expenditures steer taxpayers towards or away from certain behaviour by either imposing costs on, or providing benefits to them. Within the context of the health sector, the Australian Federal Government deploys social steering via the tax system, with the Medicare Levy Surcharge and the 30 percent Private Health Insurance Rebate intended to steer taxpayer behaviour towards the Government’s policy goal of increasing the amount of health provision through the private sector. These steering mechanisms are complemented by the ‘Lifetime Health Cover Initiative’. This article, through the lens of behavioural economics, considers the ways in which these assorted mechanisms might have been expected to operate and whether they encourage individuals to purchase private health insurance.