307 resultados para Special Steel
Resumo:
Welding system has now been concentrated on the development of new process to achieve cost savings, higher productivity and better quality in manufacturing industry. Discrete alternate supply of shielding gas is a new technology that alternately supplies the different kinds of shielding gases in weld zone. As the newdevelopedmethods compared to the previous generalwelding with a mixing supply of shielding gas, it cannot only increase thewelding quality, but also reduce the energy by 20% and the emission rate of fume. As a result, under thesamewelding conditions,comparedwith thewelding by supplying pure argon, argon + 67% helium mixture by conventional method and thewelding by supplying alternately pure argon and pure helium by alternate method showed the increased welding speed. Also, the alternate method showed the same welding speed with argon + 67% helium mixture without largely deteriorating of weld penetration. The alternate method with argon and helium compared with the conventional methods of pure argon and argon + 67% helium mixture produced the lowest degree of welding distortion.
Resumo:
This research project set out to explore Unitary Authority (UA) involvement in festivals and special events across Wales. It considers the level and nature of UA involvement and investigates activity by event purpose; reasons for, and characteristics of, UA engagement; and, crucially, the extent and nature of event evaluation. The study’s aim was to begin the development of a baseline of information for further research into the growing use of festivals and special events as a strategy for local economic development in Wales. A quantitative survey approach facilitated a comprehensive snapshot of UA responses whilst also incorporating discursive elements. A telephone survey was designed and undertaken with representatives of all 22 UA departments responsible for festivals and events in Wales. The research reveals a significant level of festival and special event activity across Wales, supported primarily for its perceived socio-cultural value. However, evaluation would appear to be focused on improving processes and measuring economic outputs rather than assessing whether socio-cultural objectives are being achieved. Whilst overwhelmingly positive about efforts to improve approaches to evaluation, respondents held clear views about the complications most likely to hamper any such efforts. These responses focused upon the need for flexibility, cost effectiveness and comparability across festival and special event typologies.
Resumo:
This paper presents efficient formulas for computing cryptographic pairings on the curve y 2 = c x 3 + 1 over fields of large characteristic. We provide examples of pairing-friendly elliptic curves of this form which are of interest for efficient pairing implementations.
Resumo:
This study investigates the impact of the New Basics Project on teachers at a special school for students with intellectual impairments. The study is aimed at exploring the complex nature of the work of special educators as they enact the New Basics curriculum with a particular focus on the teachers’ opinions about challenges that arose for their curriculum, pedagogy and assessment practices. Attention is also paid to how the principal’s leadership supported the enactment of the New Basics in respect to what he did and why he used particular strategies. The nine teachers and their principal were involved in a series of in-depth, semi-structured interviews from one of only three special schools in phase one of the New Basics trial in Queensland, Australia. These interviews produced data from the special educators as they were confronted with a new curriculum that challenged their previous teaching practices. The enactment of the New Basics curriculum occurred within the context of a state-sanctioned mandate to provide alternative programs to those offered in mainstream schools, for students with special needs. This thesis explores these teachers' experiences using critical theory as a basis for analyzing their opinions on issues such as the role of the special educator, tensions between old and new curricula, pedagogical and assessment practices, and connections between the at-school learning experiences for intellectually impaired students and the realities of post-school life. The investigation also examines the leadership conduct of the principal in changing times at the school. The findings suggest that the New Basics has played a significant role in providing structures for developing communities of practice amongst teachers; in supporting special educators to focus more on the educational needs of the students (e.g., literacy, numeracy, financial planning) and less on their medical needs (e.g., toileting, feeding, personal hygiene); and supporting school leadership that empowers and listens critically to teachers as essential components of the successful enactment of curriculum reforms like the New Basics.
Resumo:
Cold-formed steel members have been widely used in residential, industrial and commercial buildings as primary load bearing structural elements and non-load bearing structural elements (partitions) due to their advantages such as higher strength to weight ratio over the other structural materials such as hot-rolled steel, timber and concrete. Cold-formed steel members are often made from thin steel sheets and hence they are more susceptible to various buckling modes. Generally short columns are susceptible to local or distortional buckling while long columns to flexural or flexural-torsional buckling. Fire safety design of building structures is an essential requirement as fire events can cause loss of property and lives. Therefore it is essential to understand the fire performance of light gauge cold-formed steel structures under fire conditions. The buckling behaviour of cold-formed steel compression members under fire conditions is not well investigated yet and hence there is a lack of knowledge on the fire performance of cold-formed steel compression members. Current cold-formed steel design standards do not provide adequate design guidelines for the fire design of cold-formed steel compression members. Therefore a research project based on extensive experimental and numerical studies was undertaken at the Queensland University of Technology to investigate the buckling behaviour of light gauge cold-formed steel compression members under simulated fire conditions. As the first phase of this research, a detailed review was undertaken on the mechanical properties of light gauge cold-formed steels at elevated temperatures and the most reliable predictive models for mechanical properties and stress-strain models based on detailed experimental investigations were identified. Their accuracy was verified experimentally by carrying out a series of tensile coupon tests at ambient and elevated temperatures. As the second phase of this research, local buckling behaviour was investigated based on the experimental and numerical investigations at ambient and elevated temperatures. First a series of 91 local buckling tests was carried out at ambient and elevated temperatures on lipped and unlipped channels made of G250-0.95, G550-0.95, G250-1.95 and G450-1.90 cold-formed steels. Suitable finite element models were then developed to simulate the experimental conditions. These models were converted to ideal finite element models to undertake detailed parametric study. Finally all the ultimate load capacity results for local buckling were compared with the available design methods based on AS/NZS 4600, BS 5950 Part 5, Eurocode 3 Part 1.2 and the direct strength method (DSM), and suitable recommendations were made for the fire design of cold-formed steel compression members subject to local buckling. As the third phase of this research, flexural-torsional buckling behaviour was investigated experimentally and numerically. Two series of 39 flexural-torsional buckling tests were undertaken at ambient and elevated temperatures. The first series consisted 2800 mm long columns of G550-0.95, G250-1.95 and G450-1.90 cold-formed steel lipped channel columns while the second series contained 1800 mm long lipped channel columns of the same steel thickness and strength grades. All the experimental tests were simulated using a suitable finite element model, and the same model was used in a detailed parametric study following validation. Based on the comparison of results from the experimental and parametric studies with the available design methods, suitable design recommendations were made. This thesis presents a detailed description of the experimental and numerical studies undertaken on the mechanical properties and the local and flexural-torsional bucking behaviour of cold-formed steel compression member at ambient and elevated temperatures. It also describes the currently available ambient temperature design methods and their accuracy when used for fire design with appropriately reduced mechanical properties at elevated temperatures. Available fire design methods are also included and their accuracy in predicting the ultimate load capacity at elevated temperatures was investigated. This research has shown that the current ambient temperature design methods are capable of predicting the local and flexural-torsional buckling capacities of cold-formed steel compression members at elevated temperatures with the use of reduced mechanical properties. However, the elevated temperature design method in Eurocode 3 Part 1.2 is overly conservative and hence unsuitable, particularly in the case of flexural-torsional buckling at elevated temperatures.