194 resultados para Skin Diseases
Resumo:
Proper application of sunscreen is essential as an effective public health strategy for skin cancer prevention. Insufficient application is common among sunbathers, results in decreased sun protection and may therefore lead to increased UV damage of the skin. However, no objective measure of sunscreen application thickness (SAT) is currently available for field-based use. We present a method to detect SAT on human skin for determining the amount of sunscreen applied and thus enabling comparisons to manufacturer recommendations. Using a skin swabbing method and subsequent spectrophotometric analysis, we were able to determine SAT on human skin. A swabbing method was used to derive SAT on skin (in mg sunscreen per cm2 of skin area) through the concentration–absorption relationship of sunscreen determined in laboratory experiments. Analysis differentiated SATs between 0.25 and 4 mg cm−2 and showed a small but significant decrease in concentration over time postapplication. A field study was performed, in which the heterogeneity of sunscreen application could be investigated. The proposed method is a low cost, noninvasive method for the determination of SAT on skin and it can be used as a valid tool in field- and population-based studies.
Resumo:
Cutaneous cholecalciferol synthesis has not been considered in making recommendations for vitamin D intake. Our objective was to model the effects of sun exposure, vitamin D intake, and skin reflectance (pigmentation) on serum 25-hydroxyvitamin D (25[OH]D) in young adults with a wide range of skin reflectance and sun exposure. Four cohorts of participants (n = 72 total) were studied for 7-8 wk in the fall, winter, spring, and summer in Davis, CA [38.5° N, 121.7° W, Elev. 49 ft (15 m)]. Skin reflectance was measured using a spectrophotometer, vitamin D intake using food records, and sun exposure using polysulfone dosimeter badges. A multiple regression model (R^sup 2^ = 0.55; P < 0.0001) was developed and used to predict the serum 25(OH)D concentration for participants with low [median for African ancestry (AA)] and high [median for European ancestry (EA)] skin reflectance and with low [20th percentile, ~20 min/d, ~18% body surface area (BSA) exposed] and high (80th percentile, ~90 min/d, ~35% BSA exposed) sun exposure, assuming an intake of 200 IU/d (5 ug/d). Predicted serum 25(OH)D concentrations for AA individuals with low and high sun exposure in the winter were 24 and 42 nmol/L and in the summer were 40 and 60 nmol/L. Corresponding values for EA individuals were 35 and 60 nmol/L in the winter and in the summer were 58 and 85 nmol/L. To achieve 25(OH)D ≥75 nmol/L, we estimate that EA individuals with high sun exposure need 1300 IU/d vitamin D intake in the winter and AA individuals with low sun exposure need 2100-3100 IU/d year-round.
Resumo:
Introduction: Excessive exposure to ultraviolet (UV) radiation from sunlight is a causative factor in the development of skin damage and skin cancer. Little research has been undertaken into assessing the sun exposure linking to skin damage inside buildings or behind window glass. This project directly addressed this issue by aiming to assess the role that UV exposure has on skin damage for indoor workers and drivers. Methods: Measurements of personal UV exposure using UV sensitive polymer dosimeters were undertaken of 41 indoor workers and 3 professional drivers. Physical measurements of skin characteristics including skin pigmentation and UV induced skin photoaging were also determined. In addition, demographic information along with phenotypic characteristics, sun exposure and sun protection practice history, and history of skin damage were assessed through a questionnaire. Results: Indoor workers typically received low doses of UV radiation. However, one driver received a high dose (13J/cm2 UVA and 4.99 MED UVB on the arm). Age and years residing in Australia had a positive correlation with UV induced skin pigmentation. The number of major sunburns before 18 years was a risk factor for skin damage in adults. Those participants with fair skin, non-black hair and blue/green /blue-grey eye were more likely to have skin damage related to sun exposure. Conclusions: A person’s age, years residing in Australia, numbers of major sunburn, skin colour, hair colour and eye colour are important factors associated with the development of sun-related skin damage in workers. ‘Real World’ implications: 1. The number of major sunburns before 18 years was a risk factor for skin damage in adults. This clearly confirms the importance of early prevention. To protect the skin from extensive sun exposure for your generation should have significance for further prevention of skin damage. 2. It is unsurprising that age and years residing in Australia were associated with skin damage related UV radiation. Therefore, the general public should reinforce their sun protective measures and check skin regularly. 3. Drivers should take sun protective measures during their working hours between sunrise and sunset.
Resumo:
Numerous difficulties are associated with the conduct of preclinical studies related to skin and wound repair. Use of small animal models such as rodents is not optimal because of their physiological differences to human skin and mode of wound healing. Although pigs have previously been used because of their human-like mode of healing, the expense and logistics related to their use also renders them suboptimal. In view of this, alternatives are urgently required to advance the field. The experiments reported herein were aimed at developing and validating a simple, reproducible, three-dimensional ex vivo de-epidermised dermis human skin equivalent wound model for the preclinical evaluation of novel wound therapies. Having established that the human skin equivalent wound model does in fact “heal," we tested the effect of two novel wound healing therapies. We also examined the utility of the model for studies exploring the mechanisms underpinning these therapies. Taken together the data demonstrate that these new models will have wide-spread application for the generation of fundamental new information on wound healing processes and also hold potential in facilitating preclinical optimization of dosage, duration of therapies, and treatment strategies prior to clinical trials.
Resumo:
Large mysticete whales represent a unique challenge for chemical risk assessment. Few epidemiological investigations are possible due to the low incidence of adult stranding events. Similarly their often extreme life-history adaptations of prolonged migration and fasting challenge exposure assumptions. Molecular biomarkers offer the potential to complement information yielded through tissue chemical analysis, as well as providing evidence of a molecular response to chemical exposure. In this study we confirm the presence of cytochrome P450 reductase (CPR) and cytochrome P450 isoenzyme 1A1 (CYP1A1) in epidermal tissue of southern hemisphere humpback whales (Megaptera novaeangliae). The detection of CYP1A1 in the integument of the humpback whale affords the opportunity for further quantitative non-destructive investigations of enzyme activity as a function of chemical stress.
Resumo:
Anthropometric assessment is a simple, safe, and cost-efficient method to examine the health status of individu-als. The Japanese obesity classification based on the sum of two skin folds (Σ2SF) was proposed nearly 40 years ago therefore its applicability to Japanese living today is unknown. The current study aimed to determine Σ2SF cut-off values that correspond to percent body fat (%BF) and BMI values using two datasets from young Japa-nese adults (233 males and 139 females). Using regression analysis, Σ2SF and height-corrected Σ2SF (HtΣ2SF) values that correspond to %BF of 20, 25, and 30% for males and 30, 35, and 40% for females were determined. In addition, cut-off values of both Σ2SF and HtΣ2SF that correspond to BMI values of 23 kg/m2, 25 kg/m2 and 30 kg/m2 were determined. In comparison with the original Σ2SF values, the proposed values are smaller by about 10 mm at maximum. The proposed values show an improvement in sensitivity from about 25% to above 90% to identify individuals with ≥20% body fat in males and ≥30% body fat in females with high specificity of about 95% in both genders. The results indicate that the original Σ2SF cut-off values to screen obese individuals cannot be applied to young Japanese adults living today and modification is required. Application of the pro-posed values may assist screening in the clinical setting.
Resumo:
Cell based therapies as they apply to tissue engineering and regenerative medicine, require cells capable of self renewal and differentiation, and a prerequisite is to be able to prepare an effective dose of ex vivo expanded cells for autologous transplants. The in vivo identification of a source of physiologically relevant cell types suitable for cell therapies therefore figures as an integral part of tissue engineering. Stem cells serve as a reserve for biological repair, having the potential to differentiate into a number of specialised cell types within the body; they therefore represent the most useful candidates for cell based therapies. The primary goal of stem cell research is to produce cells that are both patient specific, as well as having properties suitable for the specific conditions for which they are intended to remedy. From a purely scientific perspective, stem cells allow scientists to gain a deeper understanding of developmental biology and regenerative therapies. Stem cells have acquired a number of uses for applications in regenerative medicine, immunotherapy, gene therapy, but it is in the area of tissue engineering that they generate most excitement, primarily as a result of their capacity for self-renewal and pluripotency. A unique feature of stem cells is their ability to maintain an uncommitted quiescent state in vivo and then, once triggered by conditions such as disease, injury or natural wear or tear, serve as a reservoir and natural support system to replenish lost cells. Although these cells retain the plasticity to differentiate into various tissues, being able to control this differentiation process is still one of the biggest challenges facing stem cell research. In an effort to harness the potential of these cells a number of studies have been conducted using both embryonic/foetal and adult stem cells. The use of embryonic stem cells (ESC) have been hampered by strong ethical and political concerns, this despite their perceived versatility due to their pluripotency. Ethical issues aside, other concerns raised with ESCs relates to the possibility of tumorigenesis, immune rejection and complications with immunosuppressive therapies, all of which adds layers of complications to the application ESC in research and which has led to the search for alternative sources for stem cells. The adult tissues in higher organisms harbours cells, termed adult stem cells, and these cells are reminiscent of unprogrammed stem cells. A number of sources of adult stem cells have been described. Bone marrow is by far the most accessible source of two potent populations of adult stem cells, namely haematopoietic stem cells (HSCs) and bone marrow mesenchymal stem cells (BMSCs). Autologously harvested adult stem cells can, in contrast to embryonic stem cells, readily be used in autografts, since immune rejection is not an issue; and their use in scientific research has not attracted the ethical concerns which have been the case with embryonic stem cells. The major limitation to their use, however, is the fact that adult stem cells are exceedingly rare in most tissues. This fact makes identifying and isolating these cells problematic; bone marrow being perhaps the only notable exception. Unlike the case of HSCs, there are as yet no rigorous criteria for characterizing MSCs. Changing acuity about the pluripotency of MSCs in recent studies has expanded their potential application; however, the underlying molecular pathways which impart the features distinctive to MSCs remain elusive. Furthermore, the sparse in vivo distribution of these cells imposes a clear limitation to their study in vitro. Also, when MSCs are cultured in vitro, there is a loss of the in vivo microenvironment, resulting in a progressive decline in proliferation potential and multipotentiality. This is further exacerbated with increased passage numbers in culture, characterized by the onset of senescence related changes. As a consequence, it is necessary to establish protocols for generating large numbers of MSCs but without affecting their differentiation potential. MSCs are capable of differentiating into mesenchymal tissue lineages, including bone, cartilage, fat, tendon, muscle, and marrow stroma. Recent findings indicate that adult bone marrow may also contain cells that can differentiate into the mature, nonhematopoietic cells of a number of tissues, including cells of the liver, kidney, lung, skin, gastrointestinal tract, and myocytes of heart and skeletal muscle. MSCs can readily be expanded in vitro and can be genetically modified by viral vectors and be induced to differentiate into specific cell lineages by changing the microenvironment–properties which makes these cells ideal vehicles for cellular gene therapy. MSCs can also exert profound immunosuppressive effects via modulation of both cellular and innate immune pathways, and this property allows them to overcome the issue of immune rejection. Despite the many attractive features associated with MSCs, there are still many hurdles to overcome before these cells are readily available for use in clinical applications. The main concern relates to in vivo characterization and identification of MSCs. The lack of a universal biomarker, sparse in vivo distribution, and a steady age related decline in their numbers, makes it an obvious need to decipher the reprogramming pathways and critical molecular players which govern the characteristics unique to MSCs. This book presents a comprehensive insight into the biology of adult stem cells and their utility in current regeneration therapies. The adult stem cell populations reviewed in this book include bone marrow derived MSCs, adipose derived stem cells (ASCs), umbilical cord blood stem cells, and placental stem cells. The features such as MSC circulation and trafficking, neuroprotective properties, and the nurturing roles and differentiation potential of multiple lineages have been discussed in details. In terms of therapeutic applications, the strengths of MSCs have been presented and their roles in disease treatments such as osteoarthritis, Huntington’s disease, periodontal regeneration, and pancreatic islet transplantation have been discussed. An analysis comparing osteoblast differentiation of umbilical cord blood stem cells and MSCs has been reviewed, as has a comparison of human placental stem cells and ASCs, in terms of isolation, identification and therapeutic applications of ASC in bone, cartilage regeneration, as well as myocardial regeneration. It is my sincere hope that this book will update the reader as to the research progress of MSC biology and potential use of these cells in clinical applications. It will be the best reward to all contributors of this book, if their efforts herein may in some way help the readers in any part of their study, research, and career development.
Resumo:
Background Concern about skin cancer is a common reason for people from predominantly fair-skinned populations to present to primary care doctors. Objectives To examine the frequency and body-site distribution of malignant, pre-malignant and benign pigmented skin lesions excised in primary care. Methods This prospective study conducted in Queensland, Australia, included 154 primary care doctors. For all excised or biopsied lesions, doctors recorded the patient's age and sex, body site, level of patient pressure to excise, and the clinical diagnosis. Histological confirmation was obtained through pathology laboratories. Results Of 9650 skin lesions, 57·7% were excised in males and 75·0% excised in patients ≥50years. The most common diagnoses were basal cell carcinoma (BCC) (35·1%) and squamous cell carcinoma (SCC) (19·7%). Compared with the whole body, the highest densities for SCC, BCC and actinic keratoses were observed on chronically sun-exposed areas of the body including the face in males and females, the scalp and ears in males, and the hands in females. The density of BCC was also high on intermittently or rarely exposed body sites. Females, younger patients and patients with melanocytic naevi were significantly more likely to exert moderate/high levels of pressure on the doctor to excise. Conclusions More than half the excised lesions were skin cancer, which mostly occurred on the more chronically sun-exposed areas of the body. Information on the type and body-site distribution of skin lesions can aid in the diagnosis and planned management of skin cancer and other skin lesions commonly presented in primary care.
Resumo:
Genetic research of complex diseases is a challenging, but exciting, area of research. The early development of the research was limited, however, until the completion of the Human Genome and HapMap projects, along with the reduction in the cost of genotyping, which paves the way for understanding the genetic composition of complex diseases. In this thesis, we focus on the statistical methods for two aspects of genetic research: phenotype definition for diseases with complex etiology and methods for identifying potentially associated Single Nucleotide Polymorphisms (SNPs) and SNP-SNP interactions. With regard to phenotype definition for diseases with complex etiology, we firstly investigated the effects of different statistical phenotyping approaches on the subsequent analysis. In light of the findings, and the difficulties in validating the estimated phenotype, we proposed two different methods for reconciling phenotypes of different models using Bayesian model averaging as a coherent mechanism for accounting for model uncertainty. In the second part of the thesis, the focus is turned to the methods for identifying associated SNPs and SNP interactions. We review the use of Bayesian logistic regression with variable selection for SNP identification and extended the model for detecting the interaction effects for population based case-control studies. In this part of study, we also develop a machine learning algorithm to cope with the large scale data analysis, namely modified Logic Regression with Genetic Program (MLR-GEP), which is then compared with the Bayesian model, Random Forests and other variants of logic regression.