60 resultados para Sigalon, Xavier.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a framework for adaptive security from hard random lattices in the standard model. Our approach borrows from the recent Agrawal-Boneh-Boyen families of lattices, which can admit reliable and punctured trapdoors, respectively used in reality and in simulation. We extend this idea to make the simulation trapdoors cancel not for a specific forgery but on a non-negligible subset of the possible challenges. Conceptually, we build a compactly representable, large family of input-dependent “mixture” lattices, set up with trapdoors that “vanish” for a secret subset which we hope the forger will target. Technically, we tweak the lattice structure to achieve “naturally nice” distributions for arbitrary choices of subset size. The framework is very general. Here we obtain fully secure signatures, and also IBE, that are compact, simple, and elegant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Distributed-password public-key cryptography (DPwPKC) allows the members of a group of people, each one holding a small secret password only, to help a leader to perform the private operation, associated to a public-key cryptosystem. Abdalla et al. recently defined this tool [1], with a practical construction. Unfortunately, the latter applied to the ElGamal decryption only, and relied on the DDH assumption, excluding any recent pairing-based cryptosystems. In this paper, we extend their techniques to support, and exploit, pairing-based properties: we take advantage of pairing-friendly groups to obtain efficient (simulation-sound) zero-knowledge proofs, whose security relies on the Decisional Linear assumption. As a consequence, we provide efficient protocols, secure in the standard model, for ElGamal decryption as in [1], but also for Linear decryption, as well as extraction of several identity-based cryptosystems [6,4]. Furthermore, we strenghten their security model by suppressing the useless testPwd queries in the functionality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a new kind of asymmetric mutual authentication from passwords with stronger privacy against malicious servers, lest they be tempted to engage in “cross-site user impersonation” to each other. It enables a person to authenticate (with) arbitrarily many independent servers, over adversarial channels, using a memorable and reusable single short password. Beside the usual PAKE security guarantees, our framework goes to lengths to secure the password against brute-force cracking from privileged server information.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce the notion of distributed password-based public-key cryptography, where a virtual high-entropy private key is implicitly defined as a concatenation of low-entropy passwords held in separate locations. The users can jointly perform private-key operations by exchanging messages over an arbitrary channel, based on their respective passwords, without ever sharing their passwords or reconstituting the key. Focusing on the case of ElGamal encryption as an example, we start by formally defining ideal functionalities for distributed public-key generation and virtual private-key computation in the UC model. We then construct efficient protocols that securely realize them in either the RO model (for efficiency) or the CRS model (for elegance). We conclude by showing that our distributed protocols generalize to a broad class of “discrete-log”-based public-key cryptosystems, which notably includes identity-based encryption. This opens the door to a powerful extension of IBE with a virtual PKG made of a group of people, each one memorizing a small portion of the master key.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We revisit the venerable question of access credentials management, which concerns the techniques that we, humans with limited memory, must employ to safeguard our various access keys and tokens in a connected world. Although many existing solutions can be employed to protect a long secret using a short password, those solutions typically require certain assumptions on the distribution of the secret and/or the password, and are helpful against only a subset of the possible attackers. After briefly reviewing a variety of approaches, we propose a user-centric comprehensive model to capture the possible threats posed by online and offline attackers, from the outside and the inside, against the security of both the plaintext and the password. We then propose a few very simple protocols, adapted from the Ford-Kaliski server-assisted password generator and the Boldyreva unique blind signature in particular, that provide the best protection against all kinds of threats, for all distributions of secrets. We also quantify the concrete security of our approach in terms of online and offline password guesses made by outsiders and insiders, in the random-oracle model. The main contribution of this paper lies not in the technical novelty of the proposed solution, but in the identification of the problem and its model. Our results have an immediate and practical application for the real world: they show how to implement single-sign-on stateless roaming authentication for the internet, in a ad-hoc user-driven fashion that requires no change to protocols or infrastructure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a short signature scheme that is strongly existentially unforgeable under an adaptive chosen message attack in the standard security model. Our construction works in groups equipped with an efficient bilinear map, or, more generally, an algorithm for the Decision Diffie-Hellman problem. The security of our scheme depends on a new intractability assumption we call Strong Diffie-Hellman (SDH), by analogy to the Strong RSA assumption with which it shares many properties. Signature generation in our system is fast and the resulting signatures are as short as DSA signatures for comparable security. We give a tight reduction proving that our scheme is secure in any group in which the SDH assumption holds, without relying on the random oracle model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We offer an exposition of Boneh, Boyen, and Goh’s “uber-assumption” family for analyzing the validity and strength of pairing assumptions in the generic-group model, and augment the original BBG framework with a few simple but useful extensions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper surveys the practical benefits and drawbacks of several identity-based encryption schemes based on bilinear pairings. After providing some background on identity-based cryptography, we classify the known constructions into a handful of general approaches. We then describe efficient and fully secure IBE and IBKEM instantiations of each approach, with reducibility to practice as the main design parameter. Finally, we catalogue the strengths and weaknesses of each construction according to a few theoretical and many applied comparison criteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we propose a new generalization of the notion of group signatures, that allows signers to cover the entire spectrum from complete disclosure to complete anonymity. Previous group signature constructions did not provide any disclosure capability, or at best a very limited one (such as subset membership). Our scheme offers a very powerful language for disclosing exactly in what capacity a subgroup of signers is making a signature on behalf of the group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the past several decades, cryptographers have consistently provided us with stronger and more capable primitives and protocols that have found many applications in security systems in everyday life. One of the central tenets of cryptographic design is that, whereas a system’s architecture ought to be public and open to scrutiny, the keys on which it depends — long, utterly random, unique strings of bits — will be perfectly preserved by their owner, and yet nominally inaccessible to foes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cryptographic community has, of late, shown much inventiveness in the creation of powerful new IBE-like primitives that go beyond the basic IBE notion and extend it in many new directions. Virtually all of these “super-IBE” schemes rely on bilinear pairings for their implementation, which they tend to use in a surprisingly small number of different ways: three of them as of this writing. What is interesting is that, among the three main frameworks that we know of so far, one has acted as a veritable magnet for the construction of many of these “generalized IBE” primitives, whereas the other two have not been nearly as fruitful in that respect. This refers to the Commutative Blinding framework defined by the Boneh-Boyen [Bscr ][Bscr ]1 IBE scheme from 2004. The aim of this chapter is to try to shed some light on this approach's popularity, first by comparing its key properties with those of the competing frameworks, and then by providing a number of examples that illustrate how those properties have been used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this chapter is to provide an abstraction for the class of Exponent-Inversion IBE exemplified by the [Bscr ][Bscr ]2 and [Sscr ][Kscr ] schemes, and, on the basis of that abstraction, to show that those schemes do support interesting and useful extensions such as HIBE and ABE. Our results narrow, if not entirely close, the “flexibility gap” between the Exponent-Inversion and Commutative-Blinding IBE concepts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The notion of identity-based IB cryptography was proposed by Shamir [177] as a specialization of public key PK cryptography which dispensed with the need for cumbersome directories, certificates, and revocation lists.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this survey, we review a number of the many “expressive” encryption systems that have recently appeared from lattices, and explore the innovative techniques that underpin them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The invention of asymmetric encryption back in the seventies was a conceptual leap that vastly increased the expressive power of encryption of the times. For the first time, it allowed the sender of a message to designate the intended recipient in an cryptographic way, expressed as a “public key” that was related to but distinct from the “private key” that, alone, embodied the ability to decrypt. This made large-scale encryption a practical and scalable endeavour, and more than anything else—save the internet itself—led to the advent of electronic commerce as we know and practice it today.