104 resultados para Sensor data
Resumo:
Camera-laser calibration is necessary for many robotics and computer vision applications. However, existing calibration toolboxes still require laborious effort from the operator in order to achieve reliable and accurate results. This paper proposes algorithms that augment two existing trustful calibration methods with an automatic extraction of the calibration object from the sensor data. The result is a complete procedure that allows for automatic camera-laser calibration. The first stage of the procedure is automatic camera calibration which is useful in its own right for many applications. The chessboard extraction algorithm it provides is shown to outperform openly available techniques. The second stage completes the procedure by providing automatic camera-laser calibration. The procedure has been verified by extensive experimental tests with the proposed algorithms providing a major reduction in time required from an operator in comparison to manual methods.
Resumo:
This work aims to contribute to reliability and integrity in perceptual systems of autonomous ground vehicles. Information theoretic based metrics to evaluate the quality of sensor data are proposed and applied to visual and infrared camera images. The contribution of the proposed metrics to the discrimination of challenging conditions is discussed and illustrated with the presence of airborne dust and smoke.
Resumo:
Reliable robotic perception and planning are critical to performing autonomous actions in uncertain, unstructured environments. In field robotic systems, automation is achieved by interpreting exteroceptive sensor information to infer something about the world. This is then mapped to provide a consistent spatial context, so that actions can be planned around the predicted future interaction of the robot and the world. The whole system is as reliable as the weakest link in this chain. In this paper, the term mapping is used broadly to describe the transformation of range-based exteroceptive sensor data (such as LIDAR or stereo vision) to a fixed navigation frame, so that it can be used to form an internal representation of the environment. The coordinate transformation from the sensor frame to the navigation frame is analyzed to produce a spatial error model that captures the dominant geometric and temporal sources of mapping error. This allows the mapping accuracy to be calculated at run time. A generic extrinsic calibration method for exteroceptive range-based sensors is then presented to determine the sensor location and orientation. This allows systematic errors in individual sensors to be minimized, and when multiple sensors are used, it minimizes the systematic contradiction between them to enable reliable multisensor data fusion. The mathematical derivations at the core of this model are not particularly novel or complicated, but the rigorous analysis and application to field robotics seems to be largely absent from the literature to date. The techniques in this paper are simple to implement, and they offer a significant improvement to the accuracy, precision, and integrity of mapped information. Consequently, they should be employed whenever maps are formed from range-based exteroceptive sensor data. © 2009 Wiley Periodicals, Inc.
Resumo:
Wi-Fi is a commonly available source of localization information in urban environments but is challenging to integrate into conventional mapping architectures. Current state of the art probabilistic Wi-Fi SLAM algorithms are limited by spatial resolution and an inability to remove the accumulation of rotational error, inherent limitations of the Wi-Fi architecture. In this paper we leverage the low quality sensory requirements and coarse metric properties of RatSLAM to localize using Wi-Fi fingerprints. To further improve performance, we present a novel sensor fusion technique that integrates camera and Wi-Fi to improve localization specificity, and use compass sensor data to remove orientation drift. We evaluate the algorithms in diverse real world indoor and outdoor environments, including an office floor, university campus and a visually aliased circular building loop. The algorithms produce topologically correct maps that are superior to those produced using only a single sensor modality.
Resumo:
This paper investigates communication protocols for relaying sensor data from animal tracking applications back to base stations. While Delay Tolerant Networks (DTNs) are well suited to such challenging environments, most existing protocols do not consider the available energy that is particularly important when tracking devices can harvest energy. This limits both the network lifetime and delivery probability in energy-constrained applications to the point when routing performance becomes worse than using no routing at all. Our work shows that substantial improvement in data yields can be achieved through simple yet efficient energy-aware strategies. Conceptually, there is need for balancing the energy spent on sensing, data mulling, and delivery of direct packets to destination. We use empirical traces collected in a flying fox (fruit bat) tracking project and show that simple threshold-based energy-aware strategies yield up to 20% higher delivery rates. Furthermore, these results generalize well for a wide range of operating conditions.
Resumo:
Avian species richness surveys, which measure the total number of unique avian species, can be conducted via remote acoustic sensors. An immense quantity of data can be collected, which, although rich in useful information, places a great workload on the scientists who manually inspect the audio. To deal with this big data problem, we calculated acoustic indices from audio data at a one-minute resolution and used them to classify one-minute recordings into five classes. By filtering out the non-avian minutes, we can reduce the amount of data by about 50% and improve the efficiency of determining avian species richness. The experimental results show that, given 60 one-minute samples, our approach enables to direct ecologists to find about 10% more avian species.
Resumo:
We present algorithms, systems, and experimental results for underwater data muling. In data muling a mobile agent interacts with static agents to upload, download, or transport data to a different physical location. We consider a system comprising an Autonomous Underwater Vehicle (AUV) and many static Underwater Sensor Nodes (USN) networked together optically and acoustically. The AUV can locate the static nodes using vision and hover above the static nodes for data upload. We describe the hardware and software architecture of this underwater system, as well as experimental data. © 2006 IEEE.
Resumo:
We present the design and deployment results for PosNet - a large-scale, long-duration sensor network that gathers summary position and status information from mobile nodes. The mobile nodes have a fixed-sized memory buffer to which position data is added at a constant rate, and from which data is downloaded at a non-constant rate. We have developed a novel algorithm that performs online summarization of position data within the buffer, where the algorithm naturally accommodates data input and output rate mismatch, and also provides a delay-tolerant approach to data transport. The algorithm has been extensively tested in a large-scale long-duration cattle monitoring and control application.
Resumo:
Emerging data streaming applications in Wireless Sensor Networks require reliable and energy-efficient Transport Protocols. Our recent Wireless Sensor Network deployment in the Burdekin delta, Australia, for water monitoring [T. Le Dinh, W. Hu, P. Sikka, P. Corke, L. Overs, S. Brosnan, Design and deployment of a remote robust sensor network: experiences from an outdoor water quality monitoring network, in: Second IEEE Workshop on Practical Issues in Building Sensor Network Applications (SenseApp 2007), Dublin, Ireland, 2007] is one such example. This application involves streaming sensed data such as pressure, water flow rate, and salinity periodically from many scattered sensors to the sink node which in turn relays them via an IP network to a remote site for archiving, processing, and presentation. While latency is not a primary concern in this class of application (the sampling rate is usually in terms of minutes or hours), energy-efficiency is. Continuous long-term operation and reliable delivery of the sensed data to the sink are also desirable. This paper proposes ERTP, an Energy-efficient and Reliable Transport Protocol for Wireless Sensor Networks. ERTP is designed for data streaming applications, in which sensor readings are transmitted from one or more sensor sources to a base station (or sink). ERTP uses a statistical reliability metric which ensures the number of data packets delivered to the sink exceeds the defined threshold. Our extensive discrete event simulations and experimental evaluations show that ERTP is significantly more energyefficient than current approaches and can reduce energy consumption by more than 45% when compared to current approaches. Consequently, sensor nodes are more energy-efficient and the lifespan of the unattended WSN is increased.
Resumo:
In the past few years, numerous data collection protocols have been developed for wireless sensor networks (WSNs). However, there has been no comparison of their relative performance in realistic environments. Here we report the results of an empirical study using a Fleck3 sensor network testbed for four different data collection protocols: One phase pull Directed Diffusion (DD), Expected Number of Transmissions (ETX), ETX with explicit acknowledgment (ETX-eAck), and ETX with implicit acknowledgment (ETX-iAck). Our empirical study provides useful insights for future sensor network deployments. When the required application end-to-end reliability is not strict (e.g., 70%) and link quality is good, DD and ETX are the best options because of their simplicity and low routing overhead. Both ETX-eAck and ETX-iAck achieve more than 90% end-to-end reliability when the link quality is reasonable (less than 25% packet loss). When the link quality is good, ETX-iAck introduces significantly less routing overhead (up to 50%) than ETX-eAck. However, if the radio transceiver supports variable packet length, ETX-eAck can outperform ETX-iAck when the link quality is poor. The important message from this paper is that choice of data collection protocol should come after the operating environment is understood. This understanding must include the characteristics of the radio transceiver, and link loss statistics from a long-term (across seasons and weather variation) radio survey of the site.
Resumo:
In this paper we present a novel platform for underwater sensor networks to be used for long-term monitoring of coral reefs and �sheries. The sensor network consists of static and mobile underwater sensor nodes. The nodes communicate point-to-point using a novel high-speed optical communication system integrated into the TinyOS stack, and they broadcast using an acoustic protocol integrated in the TinyOS stack. The nodes have a variety of sensing capabilities, including cameras, water temperature, and pressure. The mobile nodes can locate and hover above the static nodes for data muling, and they can perform network maintenance functions such as deployment, relocation, and recovery. In this paper we describe the hardware and software architecture of this underwater sensor network. We then describe the optical and acoustic networking protocols and present experimental networking and data collected in a pool, in rivers, and in the ocean. Finally, we describe our experiments with mobility for data muling in this network.
Resumo:
A Wireless Sensor Network (WSN) is a set of sensors that are integrated with a physical environment. These sensors are small in size, and capable of sensing physical phenomena and processing them. They communicate in a multihop manner, due to a short radio range, to form an Ad Hoc network capable of reporting network activities to a data collection sink. Recent advances in WSNs have led to several new promising applications, including habitat monitoring, military target tracking, natural disaster relief, and health monitoring. The current version of sensor node, such as MICA2, uses a 16 bit, 8 MHz Texas Instruments MSP430 micro-controller with only 10 KB RAM, 128 KB program space, 512 KB external ash memory to store measurement data, and is powered by two AA batteries. Due to these unique specifications and a lack of tamper-resistant hardware, devising security protocols for WSNs is complex. Previous studies show that data transmission consumes much more energy than computation. Data aggregation can greatly help to reduce this consumption by eliminating redundant data. However, aggregators are under the threat of various types of attacks. Among them, node compromise is usually considered as one of the most challenging for the security of WSNs. In a node compromise attack, an adversary physically tampers with a node in order to extract the cryptographic secrets. This attack can be very harmful depending on the security architecture of the network. For example, when an aggregator node is compromised, it is easy for the adversary to change the aggregation result and inject false data into the WSN. The contributions of this thesis to the area of secure data aggregation are manifold. We firstly define the security for data aggregation in WSNs. In contrast with existing secure data aggregation definitions, the proposed definition covers the unique characteristics that WSNs have. Secondly, we analyze the relationship between security services and adversarial models considered in existing secure data aggregation in order to provide a general framework of required security services. Thirdly, we analyze existing cryptographic-based and reputationbased secure data aggregation schemes. This analysis covers security services provided by these schemes and their robustness against attacks. Fourthly, we propose a robust reputationbased secure data aggregation scheme for WSNs. This scheme minimizes the use of heavy cryptographic mechanisms. The security advantages provided by this scheme are realized by integrating aggregation functionalities with: (i) a reputation system, (ii) an estimation theory, and (iii) a change detection mechanism. We have shown that this addition helps defend against most of the security attacks discussed in this thesis, including the On-Off attack. Finally, we propose a secure key management scheme in order to distribute essential pairwise and group keys among the sensor nodes. The design idea of the proposed scheme is the combination between Lamport's reverse hash chain as well as the usual hash chain to provide both past and future key secrecy. The proposal avoids the delivery of the whole value of a new group key for group key update; instead only the half of the value is transmitted from the network manager to the sensor nodes. This way, the compromise of a pairwise key alone does not lead to the compromise of the group key. The new pairwise key in our scheme is determined by Diffie-Hellman based key agreement.
Resumo:
The use of Wireless Sensor Networks (WSNs) for Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data synchronization error and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research verifying the applicability of those WSNs with respect to demanding SHM applications like modal analysis and damage identification. This paper first presents a brief review of the most inherent uncertainties of the SHM-oriented WSN platforms and then investigates their effects on outcomes and performance of the most robust Output-only Modal Analysis (OMA) techniques when employing merged data from multiple tests. The two OMA families selected for this investigation are Frequency Domain Decomposition (FDD) and Data-driven Stochastic Subspace Identification (SSI-data) due to the fact that they both have been widely applied in the past decade. Experimental accelerations collected by a wired sensory system on a large-scale laboratory bridge model are initially used as clean data before being contaminated by different data pollutants in sequential manner to simulate practical SHM-oriented WSN uncertainties. The results of this study show the robustness of FDD and the precautions needed for SSI-data family when dealing with SHM-WSN uncertainties. Finally, the use of the measurement channel projection for the time-domain OMA techniques and the preferred combination of the OMA techniques to cope with the SHM-WSN uncertainties is recommended.
Resumo:
For industrial wireless sensor networks, maintaining the routing path for a high packet delivery ratio is one of the key objectives in network operations. It is important to both provide the high data delivery rate at the sink node and guarantee a timely delivery of the data packet at the sink node. Most proactive routing protocols for sensor networks are based on simple periodic updates to distribute the routing information. A faulty link causes packet loss and retransmission at the source until periodic route update packets are issued and the link has been identified as broken. We propose a new proactive route maintenance process where periodic update is backed-up with a secondary layer of local updates repeating with shorter periods for timely discovery of broken links. Proposed route maintenance scheme improves reliability of the network by decreasing the packet loss due to delayed identification of broken links. We show by simulation that proposed mechanism behaves better than the existing popular routing protocols (AODV, AOMDV and DSDV) in terms of end-to-end delay, routing overhead, packet reception ratio.