105 resultados para Sensor Networks and Data Streaming
Resumo:
Secure communications in distributed Wireless Sensor Networks (WSN) operating under adversarial conditions necessitate efficient key management schemes. In the absence of a priori knowledge of post-deployment network configuration and due to limited resources at sensor nodes, key management schemes cannot be based on post-deployment computations. Instead, a list of keys, called a key-chain, is distributed to each sensor node before the deployment. For secure communication, either two nodes should have a key in common in their key-chains, or they should establish a key through a secure-path on which every link is secured with a key. We first provide a comparative survey of well known key management solutions for WSN. Probabilistic, deterministic and hybrid key management solutions are presented, and they are compared based on their security properties and re-source usage. We provide a taxonomy of solutions, and identify trade-offs in them to conclude that there is no one size-fits-all solution. Second, we design and analyze deterministic and hybrid techniques to distribute pair-wise keys to sensor nodes before the deployment. We present novel deterministic and hybrid approaches based on combinatorial design theory and graph theory for deciding how many and which keys to assign to each key-chain before the sensor network deployment. Performance and security of the proposed schemes are studied both analytically and computationally. Third, we address the key establishment problem in WSN which requires key agreement algorithms without authentication are executed over a secure-path. The length of the secure-path impacts the power consumption and the initialization delay for a WSN before it becomes operational. We formulate the key establishment problem as a constrained bi-objective optimization problem, break it into two sub-problems, and show that they are both NP-Hard and MAX-SNP-Hard. Having established inapproximability results, we focus on addressing the authentication problem that prevents key agreement algorithms to be used directly over a wireless link. We present a fully distributed algorithm where each pair of nodes can establish a key with authentication by using their neighbors as the witnesses.
Resumo:
The use of Wireless Sensor Networks (WSNs) for vibration-based Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data asynchronicity and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research verifying the applicability of those WSNs with respect to demanding SHM applications like modal analysis and damage identification. Based on a brief review, this paper first reveals that Data Synchronization Error (DSE) is the most inherent factor amongst uncertainties of SHM-oriented WSNs. Effects of this factor are then investigated on outcomes and performance of the most robust Output-only Modal Analysis (OMA) techniques when merging data from multiple sensor setups. The two OMA families selected for this investigation are Frequency Domain Decomposition (FDD) and data-driven Stochastic Subspace Identification (SSI-data) due to the fact that they both have been widely applied in the past decade. Accelerations collected by a wired sensory system on a large-scale laboratory bridge model are initially used as benchmark data after being added with a certain level of noise to account for the higher presence of this factor in SHM-oriented WSNs. From this source, a large number of simulations have been made to generate multiple DSE-corrupted datasets to facilitate statistical analyses. The results of this study show the robustness of FDD and the precautions needed for SSI-data family when dealing with DSE at a relaxed level. Finally, the combination of preferred OMA techniques and the use of the channel projection for the time-domain OMA technique to cope with DSE are recommended.
Resumo:
Wireless Sensor Networks (WSNs) are employed in numerous applications in different areas including military, ecology, and health; for example, to control of important information like the personnel position in a building, as a result, WSNs need security. However, several restrictions such as low capability of computation, small memory, limited resources of energy, and the unreliable channels employ communication in using WSNs can cause difficulty in use of security and protection in WSNs. It is very essential to save WSNs from malevolent attacks in unfriendly situations. Such networks require security plan due to various limitations of resources and the prominent characteristics of a wireless sensor network which is a considerable challenge. This article is an extensive review about problems of WSNs security, which examined recently by researchers and a better understanding of future directions for WSN security.
Resumo:
This thesis focuses on providing reliable data transmissions in large-scale industrial wireless sensor networks through improving network layer protocols. It addresses three major problems: scalability, dynamic industrial environments and coexistence of multiple types of data traffic in a network. Theoretical developments are conducted, followed by simulation studies for verification of theoretic results. The approach proposed in this thesis has been shown to be effective for large-scale network implementation and to provide improved data transmission reliability for both periodic and sporadic traffic.
Resumo:
This research is a step forward in improving the accuracy of detecting anomaly in a data graph representing connectivity between people in an online social network. The proposed hybrid methods are based on fuzzy machine learning techniques utilising different types of structural input features. The methods are presented within a multi-layered framework which provides the full requirements needed for finding anomalies in data graphs generated from online social networks, including data modelling and analysis, labelling, and evaluation.
Resumo:
The research on project learning has recognised the significance of knowledge transfer in project based organisations (PBOs). Effective knowledge transfer across projects avoids reinventions, enhances knowledge creation and saves lots of time that is crucial in project environment. In order to facilitate knowledge transfer, many PBOs have invested lots of financial and human resources to implement IT-based knowledge repository. However, some empirical studies found that employees would rather turn for knowledge to colleagues despite their ready access to IT-based knowledge repository. Therefore, it is apparent that social networks play a pivotal role in the knowledge transfer across projects. Some scholars attempt to explore the effect of network structure on knowledge transfer and performance, however, focused only on egocentric networks and the groups’ internal social networks. It has been found that the project’s external social network is also critical, in that the team members can not handle critical situations and accomplish the projects on time without the assistance and knowledge from external sources. To date, the influence of the structure of a project team’s internal and external social networks on project performance, and the interrelation between both networks are barely known. In order to obtain such knowledge, this paper explores the interrelation between the structure of a project team’s internal and external social networks, and their effect on the project team’s performance. Data is gathered through survey questionnaire distributed online to respondents. Collected data is analysed applying social network analysis (SNA) tools and SPSS. The theoretical contribution of this paper is the knowledge of the interrelation between the structure of a project team’s internal and external social networks and their influence on the project team’s performance. The practical contribution lies in the guideline to be proposed for constructing the structure of project team’s internal and external social networks.
Resumo:
While sensor networks have now become very popular on land, the underwater environment still poses some difficult problems. Communication is one of the difficult challenges under water. There are two options: optical and acoustic. We have designed an optical communication board that allows the Fleck’s to communicate optically. We have tested the resulting underwater sensor nodes in two different applications.
Resumo:
In this paper we describe the recent development of a low-bandwidth wireless camera sensor network. We propose a simple, yet effective, network architecture which allows multiple cameras to be connected to the network and synchronize their communication schedules. Image compression of greater than 90% is performed at each node running on a local DSP coprocessor, resulting in nodes using 1/8th the energy compared to streaming uncompressed images. We briefly introduce the Fleck wireless node and the DSP/camera sensor, and then outline the network architecture and compression algorithm. The system is able to stream color QVGA images over the network to a base station at up to 2 frames per second. © 2007 IEEE.
Resumo:
We describe the design and implementation of a public-key platform, secFleck, based on a commodity Trusted Platform Module (TPM) chip that extends the capability of a standard node. Unlike previous software public-key implementations this approach provides E- Commerce grade security; is computationally fast, energy efficient; and has low financial cost — all essential attributes for secure large-scale sen- sor networks. We describe the secFleck message security services such as confidentiality, authenticity and integrity, and present performance re- sults including computation time, energy consumption and cost. This is followed by examples, built on secFleck, of symmetric key management, secure RPC and secure software update.
Resumo:
This article presents the design and implementation of a trusted sensor node that provides Internet-grade security at low system cost. We describe trustedFleck, which uses a commodity Trusted Platform Module (TPM) chip to extend the capabilities of a standard wireless sensor node to provide security services such as message integrity, confidentiality, authenticity, and system integrity based on RSA public-key and XTEA-based symmetric-key cryptography. In addition trustedFleck provides secure storage of private keys and provides platform configuration registers (PCRs) to store system configurations and detect code tampering. We analyze system performance using metrics that are important for WSN applications such as computation time, memory size, energy consumption and cost. Our results show that trustedFleck significantly outperforms previous approaches (e.g., TinyECC) in terms of these metrics while providing stronger security levels. Finally, we describe a number of examples, built on trustedFleck, of symmetric key management, secure RPC, secure software update, and remote attestation.
Resumo:
FOS, the Fleck Operating System, is a new operating system that implements cooperative threads—providing a simple and productive environment for applications programmers. This paper discusses sensor network operating systems in general and places this development in context.
Resumo:
Communication security for wireless sensor networks (WSN) is a challenge due to the limited computation and energy resources available at nodes. We describe the design and implementation of a public-key (PK) platform based on a standard Trusted Platform Module (TPM) chip that extends the capability of a standard node. The result facilitates message security services such as confidentiality, authenticity and integrity. We present results including computation time, energy consumption and cost.
Resumo:
It is increasingly understood that learning and thus innovation often occurs via highly interactive, iterative, network-based processes. Simultaneously, economic development policy is increasingly focused on small and medium-sized enterprises (SMEs) as a means of generating growth, creating a clear research issue in terms of the roles and interactions of government policy, universities, and other sources of knowledge, SMEs, and the creation and dissemination of innovation. This paper analyses the contribution of a range of actors in an SME innovation creation and dissemination framework, reviewing the role of various institutions therein, exploring the contribution of cross-locality networks, and identifying the mechanisms required to operationalise such a framework. Bivariate and multivariate (regression) techniques are employed to investigate both innovation and growth outcomes in relation to these structures; data are derived from the survey responses of over 450 SMEs in the UK. Results are complex and dependent upon the nature of institutions involved, the type of knowledge sought, and the spatial level of the linkages in place but overall highlight the value of cross-locality networks, network governance structures, and certain spillover effects from universities. In general, we find less support for the factors predicting SME growth outcomes than is the case for innovation. Finally, we outline an agenda for further research in the area.
Resumo:
Record 8 of 29
Resumo:
Decentralised sensor networks typically consist of multiple processing nodes supporting one or more sensors. These nodes are interconnected via wireless communication. Practical applications of Decentralised Data Fusion have generally been restricted to using Gaussian based approaches such as the Kalman or Information Filter This paper proposes the use of Parzen window estimates as an alternate representation to perform Decentralised Data Fusion. It is required that the common information between two nodes be removed from any received estimates before local data fusion may occur Otherwise, estimates may become overconfident due to data incest. A closed form approximation to the division of two estimates is described to enable conservative assimilation of incoming information to a node in a decentralised data fusion network. A simple example of tracking a moving particle with Parzen density estimates is shown to demonstrate how this algorithm allows conservative assimilation of network information.