111 resultados para Second-order
Resumo:
Efficient and accurate geometric and material nonlinear analysis of the structures under ultimate loads is a backbone to the success of integrated analysis and design, performance-based design approach and progressive collapse analysis. This paper presents the advanced computational technique of a higher-order element formulation with the refined plastic hinge approach which can evaluate the concrete and steel-concrete structure prone to the nonlinear material effects (i.e. gradual yielding, full plasticity, strain-hardening effect when subjected to the interaction between axial and bending actions, and load redistribution) as well as the nonlinear geometric effects (i.e. second-order P-d effect and P-D effect, its associate strength and stiffness degradation). Further, this paper also presents the cross-section analysis useful to formulate the refined plastic hinge approach.
Resumo:
Many physical processes appear to exhibit fractional order behavior that may vary with time and/or space. The continuum of order in the fractional calculus allows the order of the fractional operator to be considered as a variable. In this paper, we consider a new space–time variable fractional order advection–dispersion equation on a finite domain. The equation is obtained from the standard advection–dispersion equation by replacing the first-order time derivative by Coimbra’s variable fractional derivative of order α(x)∈(0,1]α(x)∈(0,1], and the first-order and second-order space derivatives by the Riemann–Liouville derivatives of order γ(x,t)∈(0,1]γ(x,t)∈(0,1] and β(x,t)∈(1,2]β(x,t)∈(1,2], respectively. We propose an implicit Euler approximation for the equation and investigate the stability and convergence of the approximation. Finally, numerical examples are provided to show that the implicit Euler approximation is computationally efficient.
Resumo:
The solution of linear ordinary differential equations (ODEs) is commonly taught in first year undergraduate mathematics classrooms, but the understanding of the concept of a solution is not always grasped by students until much later. Recognising what it is to be a solution of a linear ODE and how to postulate such solutions, without resorting to tables of solutions, is an important skill for students to carry with them to advanced studies in mathematics. In this study we describe a teaching and learning strategy that replaces the traditional algorithmic, transmission presentation style for solving ODEs with a constructive, discovery based approach where students employ their existing skills as a framework for constructing the solutions of first and second order linear ODEs. We elaborate on how the strategy was implemented and discuss the resulting impact on a first year undergraduate class. Finally we propose further improvements to the strategy as well as suggesting other topics which could be taught in a similar manner.
Resumo:
We develop and test a theoretically-based integrative model of organizational innovation adoption. Confirmatory factor analyses using responses from 134 organizations showed that the hypothesized second-order model was a better fit to the data than the traditional model of independent factors. Furthermore, although not all elements were significant, the hypothesized model fit adoption better than the traditional model.
Resumo:
Query reformulation is a key user behavior during Web search. Our research goal is to develop predictive models of query reformulation during Web searching. This article reports results from a study in which we automatically classified the query-reformulation patterns for 964,780 Web searching sessions, composed of 1,523,072 queries, to predict the next query reformulation. We employed an n-gram modeling approach to describe the probability of users transitioning from one query-reformulation state to another to predict their next state. We developed first-, second-, third-, and fourth-order models and evaluated each model for accuracy of prediction, coverage of the dataset, and complexity of the possible pattern set. The results show that Reformulation and Assistance account for approximately 45% of all query reformulations; furthermore, the results demonstrate that the first- and second-order models provide the best predictability, between 28 and 40% overall and higher than 70% for some patterns. Implications are that the n-gram approach can be used for improving searching systems and searching assistance.
Resumo:
This paper reports results from a study in which we automatically classified the query reformulation patterns for 964,780 Web searching sessions (composed of 1,523,072 queries) in order to predict what the next query reformulation would be. We employed an n-gram modeling approach to describe the probability of searchers transitioning from one query reformulation state to another and predict their next state. We developed first, second, third, and fourth order models and evaluated each model for accuracy of prediction. Findings show that Reformulation and Assistance account for approximately 45 percent of all query reformulations. Searchers seem to seek system searching assistant early in the session or after a content change. The results of our evaluations show that the first and second order models provided the best predictability, between 28 and 40 percent overall, and higher than 70 percent for some patterns. Implications are that the n-gram approach can be used for improving searching systems and searching assistance in real time.
Resumo:
Suggestions that peripheral imagery may affect the development of refractive error have led to interest in the variation in refraction and aberration across the visual field. It is shown that, if the optical system of the eye is rotationally symmetric about an optical axis which does not coincide with the visual axis, measurements of refraction and aberration made along the horizontal and vertical meridians of the visual field will show asymmetry about the visual axis. The departures from symmetry are modelled for second-order aberrations, refractive components and third-order coma. These theoretical results are compared with practical measurements from the literature. The experimental data support the concept that departures from symmetry about the visual axis in the measurements of crossed-cylinder astigmatism J45 and J180 are largely explicable in terms of a decentred optical axis. Measurements of the mean sphere M suggest, however, that the retinal curvature must differ in the horizontal and vertical meridians.
Resumo:
In this paper, we consider the numerical solution of a fractional partial differential equation with Riesz space fractional derivatives (FPDE-RSFD) on a finite domain. Two types of FPDE-RSFD are considered: the Riesz fractional diffusion equation (RFDE) and the Riesz fractional advection–dispersion equation (RFADE). The RFDE is obtained from the standard diffusion equation by replacing the second-order space derivative with the Riesz fractional derivative of order αset membership, variant(1,2]. The RFADE is obtained from the standard advection–dispersion equation by replacing the first-order and second-order space derivatives with the Riesz fractional derivatives of order βset membership, variant(0,1) and of order αset membership, variant(1,2], respectively. Firstly, analytic solutions of both the RFDE and RFADE are derived. Secondly, three numerical methods are provided to deal with the Riesz space fractional derivatives, namely, the L1/L2-approximation method, the standard/shifted Grünwald method, and the matrix transform method (MTM). Thirdly, the RFDE and RFADE are transformed into a system of ordinary differential equations, which is then solved by the method of lines. Finally, numerical results are given, which demonstrate the effectiveness and convergence of the three numerical methods.
Resumo:
Financial processes may possess long memory and their probability densities may display heavy tails. Many models have been developed to deal with this tail behaviour, which reflects the jumps in the sample paths. On the other hand, the presence of long memory, which contradicts the efficient market hypothesis, is still an issue for further debates. These difficulties present challenges with the problems of memory detection and modelling the co-presence of long memory and heavy tails. This PhD project aims to respond to these challenges. The first part aims to detect memory in a large number of financial time series on stock prices and exchange rates using their scaling properties. Since financial time series often exhibit stochastic trends, a common form of nonstationarity, strong trends in the data can lead to false detection of memory. We will take advantage of a technique known as multifractal detrended fluctuation analysis (MF-DFA) that can systematically eliminate trends of different orders. This method is based on the identification of scaling of the q-th-order moments and is a generalisation of the standard detrended fluctuation analysis (DFA) which uses only the second moment; that is, q = 2. We also consider the rescaled range R/S analysis and the periodogram method to detect memory in financial time series and compare their results with the MF-DFA. An interesting finding is that short memory is detected for stock prices of the American Stock Exchange (AMEX) and long memory is found present in the time series of two exchange rates, namely the French franc and the Deutsche mark. Electricity price series of the five states of Australia are also found to possess long memory. For these electricity price series, heavy tails are also pronounced in their probability densities. The second part of the thesis develops models to represent short-memory and longmemory financial processes as detected in Part I. These models take the form of continuous-time AR(∞) -type equations whose kernel is the Laplace transform of a finite Borel measure. By imposing appropriate conditions on this measure, short memory or long memory in the dynamics of the solution will result. A specific form of the models, which has a good MA(∞) -type representation, is presented for the short memory case. Parameter estimation of this type of models is performed via least squares, and the models are applied to the stock prices in the AMEX, which have been established in Part I to possess short memory. By selecting the kernel in the continuous-time AR(∞) -type equations to have the form of Riemann-Liouville fractional derivative, we obtain a fractional stochastic differential equation driven by Brownian motion. This type of equations is used to represent financial processes with long memory, whose dynamics is described by the fractional derivative in the equation. These models are estimated via quasi-likelihood, namely via a continuoustime version of the Gauss-Whittle method. The models are applied to the exchange rates and the electricity prices of Part I with the aim of confirming their possible long-range dependence established by MF-DFA. The third part of the thesis provides an application of the results established in Parts I and II to characterise and classify financial markets. We will pay attention to the New York Stock Exchange (NYSE), the American Stock Exchange (AMEX), the NASDAQ Stock Exchange (NASDAQ) and the Toronto Stock Exchange (TSX). The parameters from MF-DFA and those of the short-memory AR(∞) -type models will be employed in this classification. We propose the Fisher discriminant algorithm to find a classifier in the two and three-dimensional spaces of data sets and then provide cross-validation to verify discriminant accuracies. This classification is useful for understanding and predicting the behaviour of different processes within the same market. The fourth part of the thesis investigates the heavy-tailed behaviour of financial processes which may also possess long memory. We consider fractional stochastic differential equations driven by stable noise to model financial processes such as electricity prices. The long memory of electricity prices is represented by a fractional derivative, while the stable noise input models their non-Gaussianity via the tails of their probability density. A method using the empirical densities and MF-DFA will be provided to estimate all the parameters of the model and simulate sample paths of the equation. The method is then applied to analyse daily spot prices for five states of Australia. Comparison with the results obtained from the R/S analysis, periodogram method and MF-DFA are provided. The results from fractional SDEs agree with those from MF-DFA, which are based on multifractal scaling, while those from the periodograms, which are based on the second order, seem to underestimate the long memory dynamics of the process. This highlights the need and usefulness of fractal methods in modelling non-Gaussian financial processes with long memory.
Resumo:
In this paper, we consider a time-space fractional diffusion equation of distributed order (TSFDEDO). The TSFDEDO is obtained from the standard advection-dispersion equation by replacing the first-order time derivative by the Caputo fractional derivative of order α∈(0,1], the first-order and second-order space derivatives by the Riesz fractional derivatives of orders β 1∈(0,1) and β 2∈(1,2], respectively. We derive the fundamental solution for the TSFDEDO with an initial condition (TSFDEDO-IC). The fundamental solution can be interpreted as a spatial probability density function evolving in time. We also investigate a discrete random walk model based on an explicit finite difference approximation for the TSFDEDO-IC.
Resumo:
A common optometric problem is to specify the eye’s ocular aberrations in terms of Zernike coefficients and to reduce that specification to a prescription for the optimum sphero-cylindrical correcting lens. The typical approach is first to reconstruct wavefront phase errors from measurements of wavefront slopes obtained by a wavefront aberrometer. This paper applies a new method to this clinical problem that does not require wavefront reconstruction. Instead, we base our analysis of axial wavefront vergence as inferred directly from wavefront slopes. The result is a wavefront vergence map that is similar to the axial power maps in corneal topography and hence has a potential to be favoured by clinicians. We use our new set of orthogonal Zernike slope polynomials to systematically analyse details of the vergence map analogous to Zernike analysis of wavefront maps. The result is a vector of slope coefficients that describe fundamental aberration components. Three different methods for reducing slope coefficients to a spherocylindrical prescription in power vector forms are compared and contrasted. When the original wavefront contains only second order aberrations, the vergence map is a function of meridian only and the power vectors from all three methods are identical. The differences in the methods begin to appear as we include higher order aberrations, in which case the wavefront vergence map is more complicated. Finally, we discuss the advantages and limitations of vergence map representation of ocular aberrations.
Resumo:
Frontline employee behaviours are recognised as vital for achieving a competitive advantage for service organisations. The services marketing literature has comprehensively examined ways to improve frontline employee behaviours in service delivery and recovery. However, limited attention has been paid to frontline employee behaviours that favour customers in ways that go against organisational norms or rules. This study examines these behaviours by introducing a behavioural concept of Customer-Oriented Deviance (COD). COD is defined as, “frontline employees exhibiting extra-role behaviours that they perceive to defy existing expectations or prescribed rules of higher authority through service adaptation, communication and use of resources to benefit customers during interpersonal service encounters.” This thesis develops a COD measure and examines the key determinants of these behaviours from a frontline employee perspective. Existing research on similar behaviours that has originated in the positive deviance and pro-social behaviour domains has limitations and is considered inadequate to examine COD in the services context. The absence of a well-developed body of knowledge on non-conforming service behaviours has implications for both theory and practice. The provision of ‘special favours’ increases customer satisfaction but the over-servicing of customers is also counterproductive for the service delivery and costly for the organisation. Despite these implications of non-conforming service behaviours, there is little understanding about the nature of these behaviours and its key drivers. This research builds on inadequacies in prior research on positive deviance, pro-social and pro-customer literature to develop the theoretical foundation of COD. The concept of positive deviance which has predominantly been used to study organisational behaviours is applied within a services marketing setting. Further, it addresses previous limitations in pro-social and pro-customer behavioural literature that has examined limited forms of behaviours with no clear understanding on the nature of these behaviours. Building upon these literature streams, this research adopts a holistic approach towards the conceptualisation of COD. It addresses previous shortcomings in the literature by providing a well bounded definition, developing a psychometrically sound measure of COD and a conceptually well-founded model of COD. The concept of COD was examined across three separate studies and based on the theoretical foundations of role theory and social identity theory. Study 1 was exploratory and based on in-depth interviews using the Critical Incident Technique (CIT). The aim of Study 1 was to understand the nature of COD and qualitatively identify its key drivers. Thematic analysis was conducted to analyse the data and the two potential dimensions of COD behaviours of Deviant Service Adaptation (DSA) and Deviant Service Communication (DSC) were revealed in the analysis. In addition, themes representing the potential influences of COD were broadly classified as individual factors, situational factors, and organisational factors. Study 2 was a scale development procedure that involved the generation and purification of items for the measure based on two student samples working in customer service roles (Pilot sample, N=278; Initial validation sample, N=231). The results for the reliability and Exploratory Factor Analyses (EFA) on the pilot sample suggested the scale had poor psychometric properties. As a result, major revisions were made in terms of item wordings and new items were developed based on the literature to reflect a new dimension, Deviant Use of Resources (DUR). The revised items were tested on the initial validation sample with the EFA analysis suggesting a four-factor structure of COD. The aim of Study 3 was to further purify the COD measure and test for nomological validity based on its theoretical relationships with key antecedents and similar constructs (key correlates). The theoretical model of COD consisting of nine hypotheses was tested on a retail and hospitality sample of frontline employees (Retail N=311; Hospitality N=305) of a market research panel using an online survey. The data was analysed using Structural Equation Modelling (SEM). The results provided support for a re-specified second-order three-factor model of COD which consists of 11 items. Overall, the COD measure was found to be reliable and valid, demonstrating convergent validity, discriminant validity and marginal partial invariance for the factor loadings. The results showed support for nomological validity, although the antecedents had differing impact on COD across samples. Specifically, empathy and perspective-taking, role conflict, and job autonomy significantly influenced COD in the retail sample, whereas empathy and perspective-taking, risk-taking propensity and role conflict were significant predictors in the hospitality sample. In addition, customer orientation-selling orientation, the altruistic dimension of organisational citizenship behaviours, workplace deviance, and social desirability responding were found to correlate with COD. This research makes several contributions to theory. First, the findings of this thesis extend the literature on positive deviance, pro-social and pro-customer behaviours. Second, the research provides an empirically tested model which describes the antecedents of COD. Third, this research contributes by providing a reliable and valid measure of COD. Finally, the research investigates the differential effects of the key antecedents in different service sectors on COD. The research findings also contribute to services marketing practice. Based on the research findings, service practitioners can better understand the phenomenon of COD and utilise the measurement tool to calibrate COD levels within their organisations. Knowledge on the key determinants of COD will help improve recruitment and training programs and drive internal initiatives within the firm.
Resumo:
On-axis monochromatic higher-order aberrations increase with age. Few studies have been made of peripheral refraction along the horizontal meridian of older eyes, and none of their off-axis higher-order aberrations. We measured wave aberrations over the central 42°x32° visual field for a 5mm pupil in 10 young and 7 older emmetropes. Patterns of peripheral refraction were similar in the two groups. Coma increased linearly with field angle at a significantly higher rate in older than in young emmetropes (−0.018±0.007 versus −0.006±0.002 µm/deg). Spherical aberration was almost constant over the measured field in both age groups and mean values across the field were significantly higher in older than in young emmetropes (+0.08±0.05 versus +0.02±0.04 µm). Total root-mean-square and higher-order aberrations increased more rapidly with field angle in the older emmetropes. However, the limits to monochromatic peripheral retinal image quality are largely determined by the second-order aberrations, which do not change markedly with age, and under normal conditions the relative importance of the increased higher-order aberrations in older eyes is lessened by the reduction in pupil diameter with age. Therefore it is unlikely that peripheral visual performance deficits observed in normal older individuals are primarily attributable to the increased impact of higher-order aberration.
Resumo:
The performance of an adaptive filter may be studied through the behaviour of the optimal and adaptive coefficients in a given environment. This thesis investigates the performance of finite impulse response adaptive lattice filters for two classes of input signals: (a) frequency modulated signals with polynomial phases of order p in complex Gaussian white noise (as nonstationary signals), and (b) the impulsive autoregressive processes with alpha-stable distributions (as non-Gaussian signals). Initially, an overview is given for linear prediction and adaptive filtering. The convergence and tracking properties of the stochastic gradient algorithms are discussed for stationary and nonstationary input signals. It is explained that the stochastic gradient lattice algorithm has many advantages over the least-mean square algorithm. Some of these advantages are having a modular structure, easy-guaranteed stability, less sensitivity to the eigenvalue spread of the input autocorrelation matrix, and easy quantization of filter coefficients (normally called reflection coefficients). We then characterize the performance of the stochastic gradient lattice algorithm for the frequency modulated signals through the optimal and adaptive lattice reflection coefficients. This is a difficult task due to the nonlinear dependence of the adaptive reflection coefficients on the preceding stages and the input signal. To ease the derivations, we assume that reflection coefficients of each stage are independent of the inputs to that stage. Then the optimal lattice filter is derived for the frequency modulated signals. This is performed by computing the optimal values of residual errors, reflection coefficients, and recovery errors. Next, we show the tracking behaviour of adaptive reflection coefficients for frequency modulated signals. This is carried out by computing the tracking model of these coefficients for the stochastic gradient lattice algorithm in average. The second-order convergence of the adaptive coefficients is investigated by modeling the theoretical asymptotic variance of the gradient noise at each stage. The accuracy of the analytical results is verified by computer simulations. Using the previous analytical results, we show a new property, the polynomial order reducing property of adaptive lattice filters. This property may be used to reduce the order of the polynomial phase of input frequency modulated signals. Considering two examples, we show how this property may be used in processing frequency modulated signals. In the first example, a detection procedure in carried out on a frequency modulated signal with a second-order polynomial phase in complex Gaussian white noise. We showed that using this technique a better probability of detection is obtained for the reduced-order phase signals compared to that of the traditional energy detector. Also, it is empirically shown that the distribution of the gradient noise in the first adaptive reflection coefficients approximates the Gaussian law. In the second example, the instantaneous frequency of the same observed signal is estimated. We show that by using this technique a lower mean square error is achieved for the estimated frequencies at high signal-to-noise ratios in comparison to that of the adaptive line enhancer. The performance of adaptive lattice filters is then investigated for the second type of input signals, i.e., impulsive autoregressive processes with alpha-stable distributions . The concept of alpha-stable distributions is first introduced. We discuss that the stochastic gradient algorithm which performs desirable results for finite variance input signals (like frequency modulated signals in noise) does not perform a fast convergence for infinite variance stable processes (due to using the minimum mean-square error criterion). To deal with such problems, the concept of minimum dispersion criterion, fractional lower order moments, and recently-developed algorithms for stable processes are introduced. We then study the possibility of using the lattice structure for impulsive stable processes. Accordingly, two new algorithms including the least-mean P-norm lattice algorithm and its normalized version are proposed for lattice filters based on the fractional lower order moments. Simulation results show that using the proposed algorithms, faster convergence speeds are achieved for parameters estimation of autoregressive stable processes with low to moderate degrees of impulsiveness in comparison to many other algorithms. Also, we discuss the effect of impulsiveness of stable processes on generating some misalignment between the estimated parameters and the true values. Due to the infinite variance of stable processes, the performance of the proposed algorithms is only investigated using extensive computer simulations.