71 resultados para Screw-fastening


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The city centre represents a complex environment for cycling with large volumes of pedestrians and motorised vehicles and frequent signalised intersections. Much of the previous literature has focused on cyclist-motor vehicle interactions because of the safety implications for cyclists, but there is increasing concern from pedestrians about the threats they perceive from cyclists. In the absence of objective data, this has the potential to lead to restrictions on cyclist access and behaviour. This presentation reports the development of a method to study the extent of cycling in the city centre and the frequency and nature of interactions between cyclists and pedestrians. Queensland is one of the few Australian jurisdictions that permits adults to cycle on the footpath and this was also of interest. 1992 cyclists were observed at six locations in the Brisbane city centre, during 7-9am, 9-11am, 2-4pm and 4-6pm on four weekdays in October 2010. The majority (85.5%) of cyclists were male, and 21.8% rode on the footpath. Females were more likely to travel on the footpath than males. One or more pedestrians were within 1m for 18.1% of observed cyclists, and one or more pedestrians were within 5m for 39.1% of observed cyclists. There were few conflicts, defined as an occasion where if no one took evasive action a collision would occur, between cyclists and pedestrians or vehicles (1.1% and 0.6% respectively) but they were more common for adolescents and riders not wearing (or not fastening) helmets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent times, light gauge steel framed (LSF) structures, such as cold-formed steel wall systems, are increasingly used, but without a full understanding of their fire performance. Traditionally the fire resistance rating of these load-bearing LSF wall systems is based on approximate prescriptive methods developed based on limited fire tests. Very often they are limited to standard wall configurations used by the industry. Increased fire rating is provided simply by adding more plasterboards to these walls. This is not an acceptable situation as it not only inhibits innovation and structural and cost efficiencies but also casts doubt over the fire safety of these wall systems. Hence a detailed fire research study into the performance of LSF wall systems was undertaken using full scale fire tests and extensive numerical studies. A new composite wall panel developed at QUT was also considered in this study, where the insulation was used externally between the plasterboards on both sides of the steel wall frame instead of locating it in the cavity. Three full scale fire tests of LSF wall systems built using the new composite panel system were undertaken at a higher load ratio using a gas furnace designed to deliver heat in accordance with the standard time temperature curve in AS 1530.4 (SA, 2005). Fire tests included the measurements of load-deformation characteristics of LSF walls until failure as well as associated time-temperature measurements across the thickness and along the length of all the specimens. Tests of LSF walls under axial compression load have shown the improvement to their fire performance and fire resistance rating when the new composite panel was used. Hence this research recommends the use of the new composite panel system for cold-formed LSF walls. The numerical study was undertaken using a finite element program ABAQUS. The finite element analyses were conducted under both steady state and transient state conditions using the measured hot and cold flange temperature distributions from the fire tests. The elevated temperature reduction factors for mechanical properties were based on the equations proposed by Dolamune Kankanamge and Mahendran (2011). These finite element models were first validated by comparing their results with experimental test results from this study and Kolarkar (2010). The developed finite element models were able to predict the failure times within 5 minutes. The validated model was then used in a detailed numerical study into the strength of cold-formed thin-walled steel channels used in both the conventional and the new composite panel systems to increase the understanding of their behaviour under nonuniform elevated temperature conditions and to develop fire design rules. The measured time-temperature distributions obtained from the fire tests were used. Since the fire tests showed that the plasterboards provided sufficient lateral restraint until the failure of LSF wall panels, this assumption was also used in the analyses and was further validated by comparison with experimental results. Hence in this study of LSF wall studs, only the flexural buckling about the major axis and local buckling were considered. A new fire design method was proposed using AS/NZS 4600 (SA, 2005), NAS (AISI, 2007) and Eurocode 3 Part 1.3 (ECS, 2006). The importance of considering thermal bowing, magnified thermal bowing and neutral axis shift in the fire design was also investigated. A spread sheet based design tool was developed based on the above design codes to predict the failure load ratio versus time and temperature for varying LSF wall configurations including insulations. Idealised time-temperature profiles were developed based on the measured temperature values of the studs. This was used in a detailed numerical study to fully understand the structural behaviour of LSF wall panels. Appropriate equations were proposed to find the critical temperatures for different composite panels, varying in steel thickness, steel grade and screw spacing for any load ratio. Hence useful and simple design rules were proposed based on the current cold-formed steel structures and fire design standards, and their accuracy and advantages were discussed. The results were also used to validate the fire design rules developed based on AS/NZS 4600 (SA, 2005) and Eurocode Part 1.3 (ECS, 2006). This demonstrated the significant improvements to the design method when compared to the currently used prescriptive design methods for LSF wall systems under fire conditions. In summary, this research has developed comprehensive experimental and numerical thermal and structural performance data for both the conventional and the proposed new load bearing LSF wall systems under standard fire conditions. Finite element models were developed to predict the failure times of LSF walls accurately. Idealized hot flange temperature profiles were developed for non-insulated, cavity and externally insulated load bearing wall systems. Suitable fire design rules and spread sheet based design tools were developed based on the existing standards to predict the ultimate failure load, failure times and failure temperatures of LSF wall studs. Simplified equations were proposed to find the critical temperatures for varying wall panel configurations and load ratios. The results from this research are useful to both structural and fire engineers and researchers. Most importantly, this research has significantly improved the knowledge and understanding of cold-formed LSF loadbearing walls under standard fire conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Despite the increasing clinical problems with metaphyseal fractures, most experimental studies investigate the healing of diaphyseal fractures. Although the mouse would be the preferable species to study the molecular and genetic aspects of metaphyseal fracture healing, a murine model does not exist yet. Using a special locking plate system, we herein introduce a new model, which allows the analysis of metaphyseal bone healing in mice. Methods: In 24 CD-1 mice the distal metaphysis of the femur was osteotomized. After stabilization with the locking plate, bone repair was analyzed radiologically, biomechanically, and histologically after 2 (n = 12) and 5 wk (n = 12). Additionally, the stiffness of the bone-implant construct was tested biomechanically ex vivo. Results: The torsional stiffness of the bone-implant construct was low compared with nonfractured control femora (0.23 ± 0.1 Nmm/°versus 1.78 ± 0.15 Nmm/°, P < 0.05). The cause of failure was a pullout of the distal screw. At 2 wk after stabilization, radiological analysis showed that most bones were partly bridged. At 5 wk, all bones showed radiological union. Accordingly, biomechanical analyses revealed a significantly higher torsional stiffness after 5 wk compared with that after 2 wk. Successful healing was indicated by a torsional stiffness of 90% of the contralateral control femora. Histological analyses showed new woven bone bridging the osteotomy without external callus formation and in absence of any cartilaginous tissue, indicating intramembranous healing. Conclusion: With the model introduced herein we report, for the first time, successful metaphyseal bone repair in mice. The model may be used to obtain deeper insights into the molecular mechanisms of metaphyseal fracture healing. © 2012 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE. To evaluate the utility of blood cultures in the assessment of early postoperative fever in hip fracture patients with no other indicators of sepsis. METHODS. 101 blood cultures were drawn on postoperative days 0 to 5 to investigate 84 febrile episodes in 31 women and 30 men (mean age, 80 years) whose body temperature measured via the tympanic route was ≥38ºC. Culture results of these 61 patients were divided into culture-positive and culture-negative groups for comparison. RESULTS. Of the 101 blood cultures, only 2 were positive: one was obtained 5 days after dynamic hip screw fixation, and the other 4 days after hemiarthroplasty. Both blood cultures grew coagulase-negative staphylococcal species, which were deemed to be skin contaminants not requiring change of patient management. 44 of these patients were treated with oral or intravenous antibiotics for a period of time. CONCLUSION. The risk of bacteraemia in patients with postoperative fever but no other symptoms of infection is low. Routine procurement of blood cultures in such patients is ineffective and of limited utility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Beauty Leaf tree (Calophyllum inophyllum) is a potential source of non-edible vegetable oil for producing future generation biodiesel because of its ability to grow in a wide range of climate conditions, easy cultivation, high fruit production rate, and the high oil content in the seed. This plant naturally occurs in the coastal areas of Queensland and the Northern Territory in Australia, and is also widespread in south-east Asia, India and Sri Lanka. Although Beauty Leaf is traditionally used as a source of timber and orientation plant, its potential as a source of second generation biodiesel is yet to be exploited. In this study, the extraction process from the Beauty Leaf oil seed has been optimised in terms of seed preparation, moisture content and oil extraction methods. The two methods that have been considered to extract oil from the seed kernel are mechanical oil extraction using an electric powered screw press, and chemical oil extraction using n-hexane as an oil solvent. The study found that seed preparation has a significant impact on oil yields, especially in the screw press extraction method. Kernels prepared to 15% moisture content provided the highest oil yields for both extraction methods. Mechanical extraction using the screw press can produce oil from correctly prepared product at a low cost, however overall this method is ineffective with relatively low oil yields. Chemical extraction was found to be a very effective method for oil extraction for its consistence performance and high oil yield, but cost of production was relatively higher due to the high cost of solvent. However, a solvent recycle system can be implemented to reduce the production cost of Beauty Leaf biodiesel. The findings of this study are expected to serve as the basis from which industrial scale biodiesel production from Beauty Leaf can be made.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Filamentary single crystals, blades, sheets, euhedral crystals and powders may form by vapor phase condensation depending on the supersauration conditions in the vapor with respect to the condensing species [1]. Filamentary crystal growth requires the operation of an axial screw dislocation [2]. A Vapor-Liquid-Solid (VLS) mechanism may also produce filamentary single crystals, ribbons and blades. The latter two morphologies are typically twinned. Crystals grown by this mechanism do not require the presence of an axial screw dislocation. Impurities may either promote or inhibit crystal growth [3]. The VLS mechanism allows crystals to grow at small supersaturation of the vapor. Thin enstatite blades, ribbons and sheets have been observed in chondritic porous Interplanetary Dust Partics (IDP's) [4, 5]. The requisite screw dislocation for vapor phase condensation [1] has been observed in these enstatite blades [4]. Bradley et al. [4] suggest that these crystals are primary vapor phase condensates which could have formed either in the solar nebula or in presolar environments. These observations [4,5] are significant in that they may provide a demonstrable link to theoretical predictions: viz. that in the primordial solar nebula filamentary condensates could cluster into 'lint balls' and form the predecessors to comets [6].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new simple test method using small scale models has been developed for testing profiled steel cladding systems under wind uplift/suction forces. This simple method should replace the large scale test method using two-span claddings used at present. It can be used for roof or wall cladding systems fastened with screw fasteners at crests or valleys.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low cycle fatigue cracking of light gauge metal roofing was investigated by testing a number of two-span corrugated roofing assemblies with different spans and fastening systems under cyclic uplift wind loading. Fatigue results correlated quite well with the corresponding static results reported earlier, and revealed the dependence of fatigue behaviour on the fastening system used. A comparison was made of one fastening system with the other regarding fatigue performance .

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Profiled steel roof claddings in Australia are commonly made of very thin high tensile steel and are crest-fixed with screw fasteners. At present the design of these claddings is entirely based on testing. In order to improve the understanding of the behaviour of these claddings under wind uplift, and thus the design methods, a detailed investigation consisting of a finite element analysis and laboratory experiments was carried out on two-span roofing assemblies of three common roofing profiles. It was found that the failure of the roof cladding system was due to a local failure (dimpling of crests/pull-through) at the fasteners. This paper presents the details of the investigation, the results and then proposes a design method based on the strength of the screwed connections, for which testing of small-scale roofing models and/or using a simple design formula is recommended.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pull-through/local dimpling failure strength of screwed connections is very important in the design of profiled steel cladding systems to help them resist storms and hurricanes. The current American and European provisions recommend four different test methods for the screwed connections in tension, but the accuracy of these methods in determining the connection strength is not known. It is unlikely that the four test methods are equivalent in all cases and thus it is necessary to reduce the number of methods recommended. This paper presents a review of these test methods based on some laboratory tests on crest- and valley-fixed claddings and then recommends alternative tests methods that reproduce the real behavior of the connections, including the bending and membrane deformations of the cladding around the screw fasteners and the tension load in the fastener.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hollow flange beam (HFB) is a new cold-formed and resistance-welded section developed in Australia. Due to its unique geometry comprising two stiff triangular flanges and a slender web, the HFB is susceptible to a lateral-distortional buckling mode of failure involving web distortion. Investigation using finite-element analyses showed that the use of transverse web plate stiffeners effectively eliminated lateral-distortional buckling of HFBs and thus any associated reduction in flexural capacity. A detailed experimental investigation was then carried out to validate the results from the finite-element analysis and to improve the stiffener configuration further. This led to the development of a special stiffener that is screw-fastened to the flanges on alternate sides of the web. This paper presents the details of the experimental investigations, the results, and the final stiffener arrangement whereas the details of the finite-element analyses are presented in a companion paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When steel roof and wall cladding systems are subjected to wind uplift/suction forces, local pull-through/dimpling failures or pull-out failures occur prematurely at their screwed connections. During extreme wind events such as storms and hurricanes, these localized failures then lead to severe damage to buildings and their contents. An investigation was therefore carried out to study the failure that occurs when the screw fastener pulls out of the steel battens, purlins, or girts. Both two-span cladding tests and small-scale tests were conducted using a range of commonly used screw fasteners and steel battens, purlins, and girts. Experimental results showed that the current design formula may not be suitable unless a reduced capacity factor of 0.4 is used. Therefore, an improved design formula has been developed for pull-out failures in steel cladding systems. The formula takes into account thickness and ultimate tensile strength of steel, along with thread diameter and the pitch of screw fasteners, in order to model the pull-out behavior more accurately. This paper presents the details of this experimental investigation and its results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crest-fixed steel claddings made of thin, high strength steel often suffer from local pull-through failures at their screw connections during high wind events such as storms and hurricanes. Currently there aren't any adequate design provisions for these cladding systems except for the expensive testing provisions. Since the local pull-through failures in the less ductile steel claddings are initiated by transverse splitting at the fastener hole, analytical studies have not been able to determine the pull-through failure loads. Analytical studies could be used if a reliable splitting criterion is available. Therefore a series of two-span cladding tests was conducted on a range of crest-fixed steel cladding systems under simulated wind uplift loads. The strains in the sheeting around the critical fastener holes were measured until the pull-through failure. This paper presents the details of the experimental investigation and the results including a strain criterion for the local pull-through failure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When crest-fixed thin steel roof cladding systems are subjected to wind uplift, local pull-through or pull-out failures occur prematurely at their screwed connections. During high wind events such as storms and cyclones these localised failures then lead to severe damage to buildings and their contents. In recent times, the use of thin steel battens/purlins has increased considerably. This has made the pull-out failures more critical in the design of steel cladding systems. Recent research has developed a design formula for the static pull-out strength of steel cladding systems. However, the effects of fluctuating wind uplift loading that occurs during high wind events are not known. Therefore a series of constant amplitude cyclic tests has been undertaken on connections between steel battens made of different thicknesses and steel grades, and screw fasteners with varying diameter and pitch. This paper presents the details of these cyclic tests and the results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Load bearing LSF walls are commonly made of cold-formed steel frames, gypsum plasterboards and insulation, and their fire performance is an important aspect of design. Many experimental and numerical studies have been conducted on the fire performance of LSF walls at the Queensland University of Technology (QUT). These studies have shown that increasing the number or thickness or quality of gypsum plasterboards has improved the fire resistance ratings (FRR) of LSF walls while the use of cavity insulation has reduced their FRR. Therefore new LSF wall systems with external insulation sandwiched between two layers of plasterboards were proposed, which provided higher FRR than cavity insulated walls. There are also other parameters that can improve the fire performance of LSF walls such as the steel type, stud geometry and depth, type of screw fasteners used, joints in the plasterboard and the plasterboard fall off time. This paper presents a review of the fire performance of LSF walls as a function of these parameters based on our research at QUT. Their effects on both the thermal and structural performance of LSF walls are discussed in detail and suitable improvements are recommended, for example, improved plasterboard joint types.