569 resultados para Scotchbond Multi Purpose Plus
Resumo:
Person re-identification is particularly challenging due to significant appearance changes across separate camera views. In order to re-identify people, a representative human signature should effectively handle differences in illumination, pose and camera parameters. While general appearance-based methods are modelled in Euclidean spaces, it has been argued that some applications in image and video analysis are better modelled via non-Euclidean manifold geometry. To this end, recent approaches represent images as covariance matrices, and interpret such matrices as points on Riemannian manifolds. As direct classification on such manifolds can be difficult, in this paper we propose to represent each manifold point as a vector of similarities to class representers, via a recently introduced form of Bregman matrix divergence known as the Stein divergence. This is followed by using a discriminative mapping of similarity vectors for final classification. The use of similarity vectors is in contrast to the traditional approach of embedding manifolds into tangent spaces, which can suffer from representing the manifold structure inaccurately. Comparative evaluations on benchmark ETHZ and iLIDS datasets for the person re-identification task show that the proposed approach obtains better performance than recent techniques such as Histogram Plus Epitome, Partial Least Squares, and Symmetry-Driven Accumulation of Local Features.
Resumo:
PURPOSE. We develop a sheep thoracic spine interbody fusion model to study the suitability of polycaprolactone-based scaffold and recombinant human bone morphogenetic protein-2 (rhBMP-2) as a bone graft substitute within the thoracic spine. The surgical approach is a mini- open thoracotomy with relevance to minimally invasive deformity correction surgery for adolescent idiopathic scoliosis. To date there are no studies examining the use of this biodegradable implant in combination with biologics in a sheep thoracic spine model. METHODS. In the present study, six sheep underwent a 3-level (T6/7, T8/9 and T10/11) discectomy with randomly allocated implantation of a different graft substitute at each of the three levels; (i) calcium phosphate (CaP) coated polycaprolactone-based scaffold plus 0.54μg rhBMP-2, (ii) CaP coated PCL- based scaffold alone or (iii) autograft (mulched rib head). Fusion was assessed at six months post-surgery. RESULTS. Computed Tomographic scanning demonstrated higher fusion grades in the rhBMP-2 plus PCL- based scaffold group in comparison to either PCL-based scaffold alone or autograft. These results were supported by histological evaluations of the respective groups. Biomechanical testing revealed significantly higher stiffness for the rhBMP-2 plus PCL- based scaffold group in all loading directions in comparison to the other two groups. CONCLUSION. The results of this study demonstrate that rhBMP-2 plus PCL- based scaffold is a viable bone graft substitute, providing an optimal environment for thoracic interbody spinal fusion in a large animal model.
Resumo:
Hepatocellular carcinoma (HCC) is one of the primary hepatic malignancies and is the third most common cause of cancer related death worldwide. Although a wealth of knowledge has been gained concerning the initiation and progression of HCC over the last half century, efforts to improve our understanding of its pathogenesis at a molecular level are still greatly needed, to enable clinicians to enhance the standards of the current diagnosis and treatment of HCC. In the post-genome era, advanced mass spectrometry driven multi-omics technologies (e.g., profiling of DNA damage adducts, RNA modification profiling, proteomics, and metabolomics) stand at the interface between chemistry and biology, and have yielded valuable outcomes from the study of a diversity of complicated diseases. Particularly, these technologies are being broadly used to dissect various biological aspects of HCC with the purpose of biomarker discovery, interrogating pathogenesis as well as for therapeutic discovery. This proof of knowledge-based critical review aims at exploring the selected applications of those defined omics technologies in the HCC niche with an emphasis on translational applications driven by advanced mass spectrometry, toward the specific clinical use for HCC patients. This approach will enable the biomedical community, through both basic research and the clinical sciences, to enhance the applicability of mass spectrometry-based omics technologies in dissecting the pathogenesis of HCC and could lead to novel therapeutic discoveries for HCC.
Resumo:
Purpose – Simple linear accounts of prescribing do not adequately address reasons “why” doctors prescribe psychotropic medication to people with intellectual disability (ID). Greater understanding of the complex array of factors that influence decisions to prescribe is needed. Design/methodology/approach – After consideration of a number of conceptual frameworks that have potential to better understand prescribing of psychotropic medication to adults with ID, an ecological model of prescribing was developed. A case study is used to outline how the model can provide greater understanding of prescribing processes. Findings – The model presented aims to consider the complexity and multi-dimensional nature of community-based psychotropic prescribing to adults with ID. The utility of the model is illustrated through a consideration of the case study. Research limitations/implications – The model presented is conceptual and is as yet untested. Practical implications – The model presented aims to capture the complexity and multi-dimensional nature of community-based psychotropic prescribing to adults with ID. The model may provide utility for clinicians and researchers as they seek clarification of prescribing decisions. Originality/value – The paper adds valuable insight into factors influencing psychotropic prescribing to adults with ID. The ecological model of prescribing extends traditional analysis that focuses on patient characteristics and introduces multi-level perspectives that may provide utility for clinicians and researchers.
Resumo:
Purpose The purpose of this paper is to test a multilevel model of the main and mediating effects of supervisor conflict management style (SCMS) climate and procedural justice (PJ) climate on employee strain. It is hypothesized that workgroup-level climate induced by SCMS can fall into four types: collaborative climate, yielding climate, forcing climate, or avoiding climate; that these group-level perceptions will have differential effects on employee strain, and will be mediated by PJ climate. Design/methodology/approach Multilevel SEM was used to analyze data from 420 employees nested in 61 workgroups. Findings Workgroups that perceived high supervisor collaborating climate reported lower sleep disturbance, job dissatisfaction, and action-taking cognitions. Workgroups that perceived high supervisor yielding climate and high supervisor forcing climate reported higher anxiety/depression, sleep disturbance, job dissatisfaction, and action-taking cognitions. Results supported a PJ climate mediation model when supervisors’ behavior was reported to be collaborative and yielding. Research limitations/implications The cross-sectional research design places limitations on conclusions about causality; thus, longitudinal studies are recommended. Practical implications Supervisor behavior in response to conflict may have far-reaching effects beyond those who are a party to the conflict. The more visible use of supervisor collaborative CMS may be beneficial. Social implications The economic costs associated with workplace conflict may be reduced through the application of these findings. Originality/value By applying multilevel theory and analysis, we extend workplace conflict theory.
Resumo:
Purpose – The purpose of this paper is to describe an innovative compliance control architecture for hybrid multi‐legged robots. The approach was verified on the hybrid legged‐wheeled robot ASGUARD, which was inspired by quadruped animals. The adaptive compliance controller allows the system to cope with a variety of stairs, very rough terrain, and is also able to move with high velocity on flat ground without changing the control parameters. Design/methodology/approach – The paper shows how this adaptivity results in a versatile controller for hybrid legged‐wheeled robots. For the locomotion control we use an adaptive model of motion pattern generators. The control approach takes into account the proprioceptive information of the torques, which are applied on the legs. The controller itself is embedded on a FPGA‐based, custom designed motor control board. An additional proprioceptive inclination feedback is used to make the same controller more robust in terms of stair‐climbing capabilities. Findings – The robot is well suited for disaster mitigation as well as for urban search and rescue missions, where it is often necessary to place sensors or cameras into dangerous or inaccessible areas to get a better situation awareness for the rescue personnel, before they enter a possibly dangerous area. A rugged, waterproof and dust‐proof corpus and the ability to swim are additional features of the robot. Originality/value – Contrary to existing approaches, a pre‐defined walking pattern for stair‐climbing was not used, but an adaptive approach based only on internal sensor information. In contrast to many other walking pattern based robots, the direct proprioceptive feedback was used in order to modify the internal control loop, thus adapting the compliance of each leg on‐line.
Resumo:
Purpose This study aims to gain a clearer understanding of digital channel design. The emergence of new technologies has revolutionised the way companies interact and engage with customers. The driver for this research was the suggestion that practitioners feel they do not possess the skills to understand and exploit new digital channel opportunities. To gain a clearer understanding of digital channel design, this paper addresses the research question: What digital channels do companies from a wide range of industries and sectors use? Design/methodology/approach A content analysis of 100 international companies was conducted with multiple data sources to form a typology of digital “touchpoints”. The appropriateness of a digital channel typology for this study was for developing rigorous and useful concepts for clarifying and refining the meaning of digital channels. Findings This study identifies what digital channels companies globally currently employ and explores the related needs across industries. A total of 34 digital touchpoints and 4 typologies of digital channels were identified across 16 industries. This research helps to identify the relationship between digital channels and enabling the connections with industry. Research limitations/implications The findings contribute to the growing research area of digital channels. The typology of digital channels is a useful starting point for developing a systematic, theory-based study for enabling the development of broader, comprehensive theories of digital channels. Practical implications Typologies and touchpoints are outlined in relation to industry, company objectives and customer needs to allow businesses to seize opportunities and optimise performance through individual touchpoints. A digital channel model as a key outcome of this research guides practitioners on what touchpoint to implement through an interrelated understanding of industry, company and customer needs. Originality/value This is the first paper to explore a range of industries in relation to their use of digital channels using a unique content analysis. Contributions include clarifying and refining digital channel meaning; identifying and refining the hierarchical relations among digital channels(typologies); and establishing typology and industry relationship model.
Resumo:
Purpose The purpose of this paper is to explore the concept of service quality for settings where several customers are involved in the joint creation and consumption of a service. The approach is to provide first insights into the implications of a simultaneous multi‐customer integration on service quality. Design/methodology/approach This conceptual paper undertakes a thorough review of the relevant literature before developing a conceptual model regarding service co‐creation and service quality in customer groups. Findings Group service encounters must be set up carefully to account for the dynamics (social activity) in a customer group and skill set and capabilities (task activity) of each of the individual participants involved in a group service experience. Research limitations/implications Future research should undertake empirical studies to validate and/or modify the suggested model presented in this contribution. Practical implications Managers of service firms should be made aware of the implications and the underlying factors of group services in order to create and manage a group experience successfully. Particular attention should be given to those factors that can be influenced by service providers in managing encounters with multiple customers. Originality/value This article introduces a new conceptual approach for service encounters with groups of customers in a proposed service quality model. In particular, the paper focuses on integrating the impact of customers' co‐creation activities on service quality in a multiple‐actor model.
Resumo:
Hydraulic instabilities represent a critical problem for Francis and Kaplan turbines, reducing their useful life due to increase of fatigue on the components and cavitation phenomena. Whereas an exhaustive list of publications on computational fluid-dynamic models of hydraulic instability is available, the possibility of applying diagnostic techniques based on vibration measurements has not been investigated sufficiently, also because the appropriate sensors seldom equip hydro turbine units. The aim of this study is to fill this knowledge gap and to exploit fully, for this purpose, the potentiality of combining cyclostationary analysis tools, able to describe complex dynamics such as those of fluid-structure interactions, with order tracking procedures, allowing domain transformations and consequently the separation of synchronous and non-synchronous components. This paper will focus on experimental data obtained on a full-scale Kaplan turbine unit, operating in a real power plant, tackling the issues of adapting such diagnostic tools for the analysis of hydraulic instabilities and proposing techniques and methodologies for a highly automated condition monitoring system. © 2015 Elsevier Ltd.
Resumo:
Background Advances in cancer diagnosis and treatment have significantly improved survival rates, through their subsequent health needs are often not adequately addressed by current health services. National Health and Medical Research Council (NHMRC) Partnerships Project awarded a national collaborative project to develop, trial and evaluate clinical benefits and cost effectiveness of an e-health enabled structured health promotion intervention - The Women’s Wellness after Cancer Program (WWACP). The aim of this e-health enabled multimodal intervention is to improve health related quality of life in women previously treated for target cancers. Aim The WWACP is a 12-week web based, interactive, holistic program. Primary outcomes for this project are to promote a positive change in health-related quality of life (HRQoL) and reduction in Body Mass Index (BMI) in the women undertaking WWACP compared to women who receive usual care. Secondary outcomes include managing other side effects of cancer treatment through evidence-based nutrition and exercise practices, dealing with stress, sleep, menopause and sexuality issues. Methods The single-blinded multi-center randomized controlled trial recruited a toatl of 330 women within 24 months of completion of chemotherapy and /or radiotherapy. Women were randomly assigned to either a usual care or intervention group. Women provided with the intervention were provided with an interactive iBook and journal, web interface, and three virtual consultations by experienced cancer nurses. A variety of methods were utilized, to enable positive self- efficacy and lifestyle changes. These include online coaching with a registered nurse trained in the intervention, plus written educational and health promotional information. The program has been delivered through the e-health enabled interfaces, which enables virtual delivery via desktop and mobile computing devices. Importantly this enables accessibility for rural and regional women in Australia who are frequently geographically disadvantaged in terms of health care provision. Results Research focusing on alternative methods of delivering post treatment / or survivorship care in cancer utilizing web based interfaces is limited, but emerging evidence suggests that Internet interventions can increase psychological and physical wellbeing in cancer patients. The WWACP trial aims to establish the effectiveness of delivery of the program in terms of positive patient outcomes and cost effective, flexibility. The trial will be completed in September and results will be presented at the conference. Conclusions Women after acute hematological, breast and gynecological cancer treatments demonstrate good cancer survival rates and face residual health problems which are amenable to behavioral interventions. The conclusion of active treatment is a key 'teachable moment' in which sustainable positive lifestyle change can be achieved if patients receive education and psychological support which targets key treatment related health problems and known chronic disease risk factors.
Resumo:
Metaphor is a multi-stage programming language extension to an imperative, object-oriented language in the style of C# or Java. This paper discusses some issues we faced when applying multi-stage language design concepts to an imperative base language and run-time environment. The issues range from dealing with pervasive references and open code to garbage collection and implementing cross-stage persistence.