334 resultados para Scientific Publishing
Resumo:
Higher-order spectral (bispectral and trispectral) analyses of numerical solutions of the Duffing equation with a cubic stiffness are used to isolate the coupling between the triads and quartets, respectively, of nonlinearly interacting Fourier components of the system. The Duffing oscillator follows a period-doubling intermittency catastrophic route to chaos. For period-doubled limit cycles, higher-order spectra indicate that both quadratic and cubic nonlinear interactions are important to the dynamics. However, when the Duffing oscillator becomes chaotic, global behavior of the cubic nonlinearity becomes dominant and quadratic nonlinear interactions are weak, while cubic interactions remain strong. As the nonlinearity of the system is increased, the number of excited Fourier components increases, eventually leading to broad-band power spectra for chaos. The corresponding higher-order spectra indicate that although some individual nonlinear interactions weaken as nonlinearity increases, the number of nonlinearly interacting Fourier modes increases. Trispectra indicate that the cubic interactions gradually evolve from encompassing a few quartets of Fourier components for period-1 motion to encompassing many quartets for chaos. For chaos, all the components within the energetic part of the power spectrum are cubically (but not quadratically) coupled to each other.
Resumo:
Polynomial models are shown to simulate accurately the quadratic and cubic nonlinear interactions (e.g. higher-order spectra) of time series of voltages measured in Chua's circuit. For circuit parameters resulting in a spiral attractor, bispectra and trispectra of the polynomial model are similar to those from the measured time series, suggesting that the individual interactions between triads and quartets of Fourier components that govern the process dynamics are modeled accurately. For parameters that produce the double-scroll attractor, both measured and modeled time series have small bispectra, but nonzero trispectra, consistent with higher-than-second order nonlinearities dominating the chaos.
Resumo:
The present study aims to validate the current best-practice model of implementation effectiveness in small and mid-size businesses. Data from 135 organizations largely confirm the original model across various types of innovation. In addition, we extended this work by highlighting the importance of human resources in implementation effectiveness and the consequences of innovation effectiveness on future adoption attitudes. We found that the availability of skilled employees was positively related to implementation effectiveness. Furthermore, organizations that perceived a high level of benefits from implemented innovations were likely to have a positive attitude towards future innovation adoption. The implications of our improvements to the original model of implementation effectiveness are discussed.
Resumo:
Recently, because of the new developments in sustainable engineering and renewable energy, which are usually governed by a series of fractional partial differential equations (FPDEs), the numerical modelling and simulation for fractional calculus are attracting more and more attention from researchers. The current dominant numerical method for modeling FPDE is Finite Difference Method (FDM), which is based on a pre-defined grid leading to inherited issues or shortcomings including difficulty in simulation of problems with the complex problem domain and in using irregularly distributed nodes. Because of its distinguished advantages, the meshless method has good potential in simulation of FPDEs. This paper aims to develop an implicit meshless collocation technique for FPDE. The discrete system of FPDEs is obtained by using the meshless shape functions and the meshless collocation formulation. The stability and convergence of this meshless approach are investigated theoretically and numerically. The numerical examples with regular and irregular nodal distributions are used to validate and investigate accuracy and efficiency of the newly developed meshless formulation. It is concluded that the present meshless formulation is very effective for the modeling and simulation of fractional partial differential equations.
Resumo:
Corrosion is a common phenomenon and critical aspects of steel structural application. It affects the daily design, inspection and maintenance in structural engineering, especially for the heavy and complex industrial applications, where the steel structures are subjected to hash corrosive environments in combination of high working stress condition and often in open field and/or under high temperature production environments. In the paper, it presents the actual engineering application of advanced finite element methods in the predication of the structural integrity and robustness at a designed service life for the furnaces of alumina production, which was operated in the high temperature, corrosive environments and rotating with high working stress condition.
Resumo:
This paper formulates a node-based smoothed conforming point interpolation method (NS-CPIM) for solid mechanics. In the proposed NS-CPIM, the higher order conforming PIM shape functions (CPIM) have been constructed to produce a continuous and piecewise quadratic displacement field over the whole problem domain, whereby the smoothed strain field was obtained through smoothing operation over each smoothing domain associated with domain nodes. The smoothed Galerkin weak form was then developed to create the discretized system equations. Numerical studies have demonstrated the following good properties: NS-CPIM (1) can pass both standard and quadratic patch test; (2) provides an upper bound of strain energy; (3) avoid the volumetric locking; (4) provides the higher accuracy than those in the node-based smoothed schemes of the original PIMs.
Resumo:
In this paper, three metaheuristics are proposed for solving a class of job shop, open shop, and mixed shop scheduling problems. We evaluate the performance of the proposed algorithms by means of a set of Lawrence’s benchmark instances for the job shop problem, a set of randomly generated instances for the open shop problem, and a combined job shop and open shop test data for the mixed shop problem. The computational results show that the proposed algorithms perform extremely well on all these three types of shop scheduling problems. The results also reveal that the mixed shop problem is relatively easier to solve than the job shop problem due to the fact that the scheduling procedure becomes more flexible by the inclusion of more open shop jobs in the mixed shop.
Resumo:
In this paper, we propose three meta-heuristic algorithms for the permutation flowshop (PFS) and the general flowshop (GFS) problems. Two different neighborhood structures are used for these two types of flowshop problem. For the PFS problem, an insertion neighborhood structure is used, while for the GFS problem, a critical-path neighborhood structure is adopted. To evaluate the performance of the proposed algorithms, two sets of problem instances are tested against the algorithms for both types of flowshop problems. The computational results show that the proposed meta-heuristic algorithms with insertion neighborhood for the PFS problem perform slightly better than the corresponding algorithms with critical-path neighborhood for the GFS problem. But in terms of computation time, the GFS algorithms are faster than the corresponding PFS algorithms.
Resumo:
We develop and test a theoretically-based integrative framework of key proximal factors (orientation, pressure, and control) that helps to explain the effects of more general factors (the organisation's strategy, structure, and environment) on intentions to adopt an innovation one year later. Senior managers from 134 organizations were surveyed and confirmatory factor analyses showed that these hypothesized core factors provided a good fit to the data, indicating that our framework can provide a theoretical base to the previous, largely a theoretical, literature. Moreover, in a subgroup of 63 organizations, control mediated the effects of organizational strategy and centralisation on organizational innovation adoption intentions one year later. We suggest this model of core factors enables researchers to understand why certain variables are important to organisational innovation adoption and promotes identification of fertile research areas around orientation, pressure and control, and it enables managers to focus on the most proximal triggers for increasing innovation adoption.
Resumo:
Based on the molecular dynamics (MD) method, the single-crystalline copper nanowire with different surface defects is investigated through tension simulation. For comparison, the MD tension simulations of perfect nanowire are firstly carried out under different temperatures, strain rates, and sizes. It has concluded that the surface-volume ratio significantly affects the mechanical properties of nanowire. The surface defects on nanowires are then systematically studied in considering different defect orientation and distribution. It is found that the Young’s modulus is insensitive of surface defects. However, the yield strength and yield point show a significant decrease due to the different defects. Different defects are observed to serve as a dislocation source.