489 resultados para STRUCTURAL STABILITY
Resumo:
Sedimentary palygorskite (SP) and hydrothermal palygorskite (HP) were characterized by XRF, TG/DSC, andXRD. The total iron and dissociative iron in palygorskite were detected using spectrophotometry. The results showed that about 3.57 wt% of Fe2O3 was detected in SP in contrast with 0.4 wt% in HP. SP was a Fe-substituted palygorskite, and HP was an Al-rich palygorskite. The occurrence of Fe substitution in SP resulted in two mass loss steps of coordinated water and resulted in a larger d spacing. The SP showed greater thermal stability than the HP. It was proposed the change of (200) diffraction peak and (240) diffraction peak reflect changes of tetrahedral and octahedral structures in palygorskite.
Resumo:
Chromium oxyhydroxide nanomaterials with narrow size-distribution were synthesised through a simple hydrothermal method. Experimental conditions, such as reaction duration and pH values of the precipitation process and hydrothermal treatment played important roles in determining the nature of the final product chromium oxyhydroxide nanomaterials. The effect of these synthesis parameters were studied with the assistance of X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and thermogravimetric analyses. This research has developed a controllable synthesis of Chromium oxyhydroxide nanomaterials from Chromium oxide colloids.
Resumo:
Three long chain cationic surfactants were intercalated into Ca-montmorillonite through ion exchangeand the obtained organoclays were characterized by X-ray diffraction (XRD), high resolution thermo-gravimetric analysis (TG) and Raman spectroscopy. The intercalation of surfactants not only changes thesurface properties of clay from hydrophilic to hydrophobic but also greatly increases the basal spacing ofthe interlayers based on XRD analysis. The thermal stability of organoclays intercalated with three sur-factants (TTAB, DTAB and CTAB) and the different arrangements of the surfactant molecules intercalatedinto Ca-montmorillonite were determined by TG-DTG analysis. A Raman spectroscopic study on the Ca-montmorillonite modified by three surfactants prepared at different concentrations provided the detailedconformational ordering of different intercalated long-chain surfactants under different conditions. Thewavenumber of the antisymmetric stretching mode is more sensitive than that of the symmetric stretch-ing mode to the mobility of the tail of the amine chain. At room temperature, the conformational orderingis more easily affected by the packing density in the lateral model. With the increase of the temperature,the positions of both the antisymmetric and symmetric stretching bands shift to higher wavenumbers,which indicates a decrease of conformational ordering. This study offers new insights into the struc-ture and properties of Ca-montmorillonite modified with different long chain surfactants. Moreover, theexperimental results confirm the potential applications of organic Ca-montmorillonites for the removalof organic impurities from aqueous media.
Resumo:
This investigation used a combination of techniques, such as X-ray diffraction, inductively coupled plasma optical emission spectroscopy and infrared spectroscopy, to determine the dissolution mechanisms of the Bayer precipitate and the associated rate of dissolution in acetic, citric and oxalic acid environments. The Bayer precipitate is a mixture of hydrotalcite, calcium carbonate and sodium chloride that forms during the seawater neutralisation of Bayer liquors (waste residue of the alumina industry). The dissolution rate of a Bayer precipitate is found to be dependent on (1) the strength of the organic acid and (2) the number of donating H+ ions. The dissolution mechanism for a Bayer precipitate consists of several steps involving: (1) the dissolution of CaCO3, (2) formation of whewellite (calcium oxalate) when oxalic acid is used and (3) multiple dissolution steps for hydrotalcite that are highly dependent on the pH of solution. The decomposition of the Al–OH hydrotalcite layers resulted in the immediate formation of Al(OH)3, which is stable until the pH decreases below 5.5. This investigation has found that the Bayer precipitate is stable across a wide pH range in the presence of common organic acids found in the rhizosphere, and that initial decomposition steps are likely to be beneficial in supporting plant growth through the release of nutrients such as Ca2þ and Mg2þ.
Resumo:
Recent developments in chemical pretreatments of lignocellulosic biomass using polyols as co-solvents (e.g., glycerol and ethylene glycol) at temperatures less than 100 °C may allow the effective use of thermostable and non-thermostable cellulases in situ during the saccharification process. The potential of biomass saccharifying enzymes, endoglucanases (EG) from a thermophilic bacterium (Thermotoga maritima) and a mesophilic fungus (Trichoderma longibrachiatum), to retain their activity in aqueous buffer, acidified glycerol, and acidified ethylene glycol used as co-solvents at pretreatment temperatures at or below 100 °C were examined. The results show that despite its origin, T. longibrachiatum EG (Tl-EG) retained 75% of its activity after exposure to 100 °C for 5 min in aqueous buffer while T. maritima EG (Tm-EG) retained only 5% activity. However, at 90 °C both enzymes retained over 87% of their activity. In acidified (0.1% (w/w) H2SO4) glycerol, Tl-EG retained similar activity (80%) to that obtained in glycerol alone, while Tm-EG retained only 35%. With acidified ethylene glycol under these conditions, both Tl-EG and Tm-EG retained 36% of their activity. The results therefore show that Tl-EG is more stable in both acidified glycerol and ethylene glycol than Tm-EG. A preliminary kinetic study showed that pure glycerol improved the thermal stability of Tl-EG but destabilized Tm-EG, relative to the buffer solution. The half-lives of both Tl-EG and Tm-EG are 4.5 min in acidified glycerol, indicating that the effectiveness of these enzymes under typical pretreatment times of greater than 15 min will be considerably diminished. Attempts have been made to explain the differences in the results obtained between the two enzymes.
Resumo:
The removal of fluoride using red mud has been improved by acidifying red mud with hydrochloric, nitric and sulphuric acid. This investigation shows that the removal of fluoride using red mud is significantly improved if red mud is initially acidified. The acidification of red mud causes sodalite and cancrinite phases to dissociate, confirmed by the release of sodium and aluminium into solution as well as the disappearance of sodalite bands and peaks in infrared and X-ray diffraction data. The dissolution of these mineral phases increases the amount of available iron and aluminium oxide/hydroxide sites that are accessible for the adsorption of fluoride. The removal of fluoride is dependent on the charge of iron and aluminium oxide/hydroxides on the surface of red mud. Acidifying red mud with hydrochloric, nitric and sulphuric acid resulted in surface sites of the form ≡ SOH2+ and ≡ SOH. Optimum removal is obtained when the majority of surface sites are in the form ≡ SOH2+ as the substitution of a fluoride ion doesn’t cause a significant increase in pH. This investigation shows the importance of having a low and consistent pH for the removal of fluoride from aqueous solutions using red mud.
Resumo:
A series of styrene-butadiene rubber (SBR) nanocomposites filledwith different particle sized kaolinites are prepared via a latex blending method. The thermal stabilities of these clay polymer nanocomposites (CPN) are characterized by a range of techniques including thermogravimetry (TG), digital photos, scanning electron microscopy (SEM) and Raman spectroscopy. These CPN show some remarkable improvement in thermal stability compared to that of the pure SBR. With the increase of kaolinite particle size, the residual char content and the average activation energy of kaolinite SBR nanocomposites all decrease; the pyrolysis residues become porous; the crystal carbon in the pyrolysis residues decrease significantly from 58.23% to 44.41%. The above results prove that the increase of kaolinite particle size is not beneficial in improving the thermal stability of kaolinite SBR nanocomposites.
Resumo:
Al-C-N-O composite thin films have been synthesized by radio frequency reactive diode sputtering of an aluminum target in plasmas of N2+O2+CH4 gas mixtures. The chemical structure and composition of the films have been investigated by means of infrared and X-ray photoelectron spectroscopy. The results reveal the formation of C-N, Al-C, Al-N and Al-O bonds. The X-ray diffraction pattern suggests that the films are of nanometer composite material and contain predominately crystalline grains of hexagonal AlN and α-Al2O3. A good thermal stability of the composite has been confirmed by the annealing treatment at temperatures up to 600 °C.
Resumo:
A single plant cell was modeled with smoothed particle hydrodynamics (SPH) and a discrete element method (DEM) to study the basic micromechanics that govern the cellular structural deformations during drying. This two-dimensional particle-based model consists of two components: a cell fluid model and a cell wall model. The cell fluid was approximated to a highly viscous Newtonian fluid and modeled with SPH. The cell wall was treated as a stiff semi-permeable solid membrane with visco-elastic properties and modeled as a neo-Hookean solid material using a DEM. Compared to existing meshfree particle-based plant cell models, we have specifically introduced cell wall–fluid attraction forces and cell wall bending stiffness effects to address the critical shrinkage characteristics of the plant cells during drying. Also, a moisture domain-based novel approach was used to simulate drying mechanisms within the particle scheme. The model performance was found to be mainly influenced by the particle resolution, initial gap between the outermost fluid particles and wall particles and number of particles in the SPH influence domain. A higher order smoothing kernel was used with adaptive smoothing length to improve the stability and accuracy of the model. Cell deformations at different states of cell dryness were qualitatively and quantitatively compared with microscopic experimental findings on apple cells and a fairly good agreement was observed with some exceptions. The wall–fluid attraction forces and cell wall bending stiffness were found to be significantly improving the model predictions. A detailed sensitivity analysis was also done to further investigate the influence of wall–fluid attraction forces, cell wall bending stiffness, cell wall stiffness and the particle resolution. This novel meshfree based modeling approach is highly applicable for cellular level deformation studies of plant food materials during drying, which characterize large deformations.
Resumo:
Objective: To investigate limb loading and dynamic stability during squatting in the early functional recovery of total hip arthroplasty (THA) patients. Design: Cohort study Setting: Inpatient rehabilitation clinic. Participants: A random sample of 61 THA patients (34♂/27♀; 62±9 yrs, 77±14 kg, 174±9 cm) was assessed twice, 13.2±3.8 days (PRE) and 26.6±3.3 days post-surgery (POST), and compared with a healthy reference group (REF) (22♂/16♀; 47±12yrs; 78±20kg; 175±10cm). Interventions: THA patients received two weeks of standard in-patient rehabilitation. Main Outcome Measure(s): Inter-limb vertical force distribution and dynamic stability during the squat maneuver, as defined by the root mean square (RMS) of the center of pressure in antero-posterior and medio-lateral directions, of operated (OP) and non-operated (NON)limbs. Self-reported function was assessed via FFb-H-OA 2.0 questionnaire. Results: At PRE, unloading of the OP limb was 15.8% greater (P<.001, d=1.070) and antero-posterior and medio-lateral center of pressure RMS were 30-34% higher in THA than REF P<.05). Unloading was reduced by 12.8% towards a more equal distribution from PRE to POST (P<.001, d=0.874). Although medio-lateral stability improved between PRE and POST (OP: 14.8%, P=.024, d=0.397; NON: 13.1%, P=.015, d=0.321), antero-posterior stability was not significantly different. Self-reported physical function improved by 15.8% (P<.001, d=0.965). Conclusion(s): THA patients unload the OP limb and are dynamically more unstable during squatting in the early rehabilitation phase following total hip replacement than healthy adults. Although loading symmetry and medio-lateral stability improved to the level of healthy adults with rehabilitation, antero-posterior stability remained impaired. Measures of dynamic stability and load symmetry during squatting provide quantitative information that can be used to clinically monitor early functional recovery from THA.
Resumo:
In the finite element modelling of structural frames, external loads such as wind loads, dead loads and imposed loads usually act along the elements rather than at the nodes only. Conventionally, when an element is subjected to these general transverse element loads, they are usually converted to nodal forces acting at the ends of the elements by either lumping or consistent load approaches. In addition, it is especially important for an element subjected to the first- and second-order elastic behaviour, to which the steel structure is critically prone to; in particular the thin-walled steel structures, when the stocky element section may be generally critical to the inelastic behaviour. In this sense, the accurate first- and second-order elastic displacement solutions of element load effect along an element is vitally crucial, but cannot be simulated using neither numerical nodal nor consistent load methods alone, as long as no equilibrium condition is enforced in the finite element formulation, which can inevitably impair the structural safety of the steel structure particularly. It can be therefore regarded as a unique element load method to account for the element load nonlinearly. If accurate displacement solution is targeted for simulating the first- and second-order elastic behaviour on an element on the basis of sophisticated non-linear element stiffness formulation, the numerous prescribed stiffness matrices must indispensably be used for the plethora of specific transverse element loading patterns encountered. In order to circumvent this shortcoming, the present paper proposes a numerical technique to include the transverse element loading in the non-linear stiffness formulation without numerous prescribed stiffness matrices, and which is able to predict structural responses involving the effect of first-order element loads as well as the second-order coupling effect between the transverse load and axial force in the element. This paper shows that the principle of superposition can be applied to derive the generalized stiffness formulation for element load effect, so that the form of the stiffness matrix remains unchanged with respect to the specific loading patterns, but with only the magnitude of the loading (element load coefficients) being needed to be adjusted in the stiffness formulation, and subsequently the non-linear effect on element loadings can be commensurate by updating the magnitude of element load coefficients through the non-linear solution procedures. In principle, the element loading distribution is converted into a single loading magnitude at mid-span in order to provide the initial perturbation for triggering the member bowing effect due to its transverse element loads. This approach in turn sacrifices the effect of element loading distribution except at mid-span. Therefore, it can be foreseen that the load-deflection behaviour may not be as accurate as those at mid-span, but its discrepancy is still trivial as proved. This novelty allows for a very useful generalised stiffness formulation for a single higher-order element with arbitrary transverse loading patterns to be formulated. Moreover, another significance of this paper is placed on shifting the nodal response (system analysis) to both nodal and element response (sophisticated element formulation). For the conventional finite element method, such as the cubic element, all accurate solutions can be only found at node. It means no accurate and reliable structural safety can be ensured within an element, and as a result, it hinders the engineering applications. The results of the paper are verified using analytical stability function studies, as well as with numerical results reported by independent researchers on several simple frames.
Resumo:
Purpose – In structural, earthquake and aeronautical engineering and mechanical vibration, the solution of dynamic equations for a structure subjected to dynamic loading leads to a high order system of differential equations. The numerical methods are usually used for integration when either there is dealing with discrete data or there is no analytical solution for the equations. Since the numerical methods with more accuracy and stability give more accurate results in structural responses, there is a need to improve the existing methods or develop new ones. The paper aims to discuss these issues. Design/methodology/approach – In this paper, a new time integration method is proposed mathematically and numerically, which is accordingly applied to single-degree-of-freedom (SDOF) and multi-degree-of-freedom (MDOF) systems. Finally, the results are compared to the existing methods such as Newmark’s method and closed form solution. Findings – It is concluded that, in the proposed method, the data variance of each set of structural responses such as displacement, velocity, or acceleration in different time steps is less than those in Newmark’s method, and the proposed method is more accurate and stable than Newmark’s method and is capable of analyzing the structure at fewer numbers of iteration or computation cycles, hence less time-consuming. Originality/value – A new mathematical and numerical time integration method is proposed for the computation of structural responses with higher accuracy and stability, lower data variance, and fewer numbers of iterations for computational cycles.
Resumo:
Graphitic like layered materials exhibit intriguing electronic structures and thus the search for new types of two-dimensional (2D) monolayer materials is of great interest for developing novel nano-devices. By using density functional theory (DFT) method, here we for the first time investigate the structure, stability, electronic and optical properties of monolayer lead iodide (PbI2). The stability of PbI2 monolayer is first confirmed by phonon dispersion calculation. Compared to the calculation using generalized gradient approximation, screened hybrid functional and spin–orbit coupling effects can not only predicts an accurate bandgap (2.63 eV), but also the correct position of valence and conduction band edges. The biaxial strain can tune its bandgap size in a wide range from 1 eV to 3 eV, which can be understood by the strain induced uniformly change of electric field between Pb and I atomic layer. The calculated imaginary part of the dielectric function of 2D graphene/PbI2 van der Waals type hetero-structure shows significant red shift of absorption edge compared to that of a pure monolayer PbI2. Our findings highlight a new interesting 2D material with potential applications in nanoelectronics and optoelectronics.
Resumo:
Rupture of vulnerable atheromatous plaque in the carotid and coronary arteries often leads to stroke and heart attack respectively. The mechanism of blood flow and plaque rupture in stenotic arteries is still not fully understood. A three dimensional rigid wall model was solved under steady state conditions and unsteady conditions by assuming a time-varying inlet velocity profile to investigate the relative importance of axial forces and pressure drops in arteries with asymmetric stenosis. Flow-structure interactions were investigated for the same geometry and the results were compared with those retrieved with the corresponding 2D cross-section structural models. The Navier-Stokes equations were used as the governing equations for the fluid. The tube wall was assumed hyperelastic, homogeneous, isotropic and incompressible. The analysis showed that the three dimensional behavior of velocity, pressure and wall shear stress is in general very different from that predicted by cross-section models. Pressure drop across the stenosis was found to be much higher than shear stress. Therefore, pressure may be the more important mechanical trigger for plaque rupture other than shear stress, although shear stress is closely related to plaque formation and progression.
Resumo:
Background: Rupture of vulnerable atheromatous plaque in the carotid and coronary arteries often leads to stroke and heart attack respectively. The role of calcium deposition and its contribution to plaque stability is controversial. This study uses both an idealized and a patient-specific model to evaluate the effect of a calcium deposit on the stress distribution within an atheromatous plaque. Methods: Using a finite-element method, structural analysis was performed on an idealized plaque model and the location of a calcium deposit within it was varied. In addition to the idealized model, in vivo high-resolution MR imaging was performed on 3 patients with carotid atheroma and stress distributions were generated. The individual plaques were chosen as they had calcium at varying locations with respect to the lumen and the fibrous cap. Results: The predicted maximum stress was increased by 47.5% when the calcium deposit was located in the thin fibrous cap in the model when compared with that in a model without a deposit. The result of adding a calcium deposit either to the lipid core or remote from the lumen resulted in almost no increase in maximal stress. Conclusion: Calcification at the thin fibrous cap may result in high stress concentrations, ultimately increasing the risk of plaque rupture. Assessing the location of calcification may, in the future, aid in the risk stratification of patients with carotid stenosis.