53 resultados para SIGNALING APTAMERS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Olfactory ensheathing cells (OECs) are specialized glial cells in the mammalian olfactory system supporting growth of axons from the olfactory epithelium into the olfactory bulb. OECs in the olfactory bulb can be subdivided into OECs of the outer nerve layer and the inner nerve layer according to the expression of marker proteins and their location in the nerve layer. In the present study, we have used confocal calcium imaging of OECs in acute mouse brain slices and olfactory bulbs in toto to investigate physiological differences between OEC subpopulations. OECs in the outer nerve layer, but not the inner nerve layer, responded to glutamate, ATP, serotonin, dopamine, carbachol, and phenylephrine with increases in the cytosolic calcium concentration. The calcium responses consisted of a transient and a tonic component, the latter being mediated by store-operated calcium entry. Calcium measurements in OECs during the first three postnatal weeks revealed a downregulation of mGluR(1) and P2Y(1) receptor-mediated calcium signaling within the first 2 weeks, suggesting that the expression of these receptors is developmentally controlled. In addition, electrical stimulation of sensory axons evoked calcium signaling via mGluR(1) and P2Y(1) only in outer nerve layer OECs. Downregulation of the receptor-mediated calcium responses in postnatal animals is reflected by a decrease in amplitude of stimulation-evoked calcium transients in OECs from postnatal days 3 to 21. In summary, the results presented reveal striking differences in receptor responses during development and in axon-OEC communication between the two subpopulations of OECs in the olfactory bulb.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heparan sulfate proteoglycans cooperate with basic fibroblast growth factor (bFGF/FGF2) signaling to control osteoblast growth and differentiation, as well as metabolic functions of osteoblasts. FGF2 signaling modulates the expression and activity of Runt-related transcription factor 2 (Runx2/Cbfa1), a key regulator of osteoblast proliferation and maturation. Here, we have characterized novel Runx2 target genes in osteoprogenitors under conditions that promote growth arrest while not yet permitting sustained phenotypic maturation. Runx2 enhances expression of genes related to proteoglycan-mediated signaling, including FGF receptors (e.g., FGFR2 and FGFR3) and proteoglycans (e.g., syndecans [Sdc1, Sdc2, Sdc3], glypicans [Gpc1], versican [Vcan]). Runx2 increases expression of the glycosyltransferase Exostosin-1 (Ext1) and heparanase, as well as alters the relative expression of N-linked sulfotransferases (Ndst1 = Ndst2 > Ndst3) and enzymes mediating O-linked sulfation of heparan sulfate (Hs2st > Hs6st) or chondroitin sulfate (Cs4st > Cs6st). Runx2 cooperates with FGF2 to induce expression of Sdc4 and the sulfatase Galns, but Runx2 and FGF2 suppress Gpc6, thus suggesting intricate Runx2 and FGF2 dependent changes in proteoglycan utilization. One functional consequence of Runx2 mediated modulations in proteoglycan-related gene expression is a change in the responsiveness of bone markers to FGF2 stimulation. Runx2 and FGF2 synergistically enhance osteopontin expression (>100 fold), while FGF2 blocks Runx2 induction of alkaline phosphatase. Our data suggest that Runx2 and the FGF/proteoglycan axis may form an extracellular matrix (ECM)-related regulatory feed-back loop that controls osteoblast proliferation and execution of the osteogenic program.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large scale screening of libraries consisting of natural and small molecules led to the identification of many small molecule inhibitors repressing Wnt/β-Catenin signaling. However, targeted synthesis of novel Wnt pathway inhibitors has been rarely described. We developed a modular and expedient way to create the aromatic ring system with an aliphatic ring in between. Our synthesis opens up the possibility, in principle, to substitute all positions at the ring system with any desired substituent. Here, we tested five different haloquinone analogs carrying methoxy- and hydroxy-groups at different positions. Bona fide Wnt activity assays in cell culture and in Xenopus embryos revealed that two of these compounds act as potent inhibitors of aberrant activated Wnt/β-Catenin signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This 2nd special edition of Cells Tissues Organs on epithelial-mesenchymal transitions (EMT) stems from the 2nd International Conference on EMT, which was convened by Shoukat Dedhar and Raghu Kalluri on October 1–3, 2005, in Vancouver, B.C., Canada. EMT – the transformation of epithelial cells which are usually arranged in a coherent layer and sessile, into more individualistic and motile cells, mesenchymal cells – is well recognized as an important primary mechanism in embryogenesis for remodeling tissues, as is the reverse transition. This has obvious implications in numerous pathophysiologies, and in particular EMT has emerged as an important feature of fibrosis in a growing number of organ types. It is now clear that about a third of the fibroblasts in the setting of organ fibrosis are likely derived from the epithelium. Cancer EMT remains topical, and although EMT has been reported in many cancer studies, this meeting was held against a backdrop of controversy in the cancer community as to the prevalence of EMT in clinical scenarios [Tarin et al.: Cancer Res 2005;65:5996–6000; Thompson et al.: Cancer Res 2005;65:5991–5995]...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The microenvironment plays a pivotal role in tumor cell proliferation, survival and migration. Invasive cancer cells face a new set of environmental challenges as they breach the basement membrane and colonize distant organs during the process of metastasis. Phenotypic switching, such as that which occurs during epithelial-mesenchymal transition (EMT), may be associated with a remodeling of cell surface receptors and thus altered responses to signals from the tumor microenvironment. Methodology/Principal Findings We assessed changes in intracellular Ca 2+ in cells loaded with Fluo-4 AM using a fluorometric imaging plate reader (FLIPR TETRA) and observed significant changes in the potency of ATP (EC 50 0.175 μM (-EGF) versus 1.731 μM (+EGF), P<0.05), and the nature of the ATP-induced Ca 2+ transient, corresponding with a 10-fold increase in the mesenchymal marker vimentin (P<0.05). We observed no change in the sensitivity to PAR2-mediated Ca 2+ signaling, indicating that these alterations are not simply a consequence of changes in global Ca 2+ homeostasis. To determine whether changes in ATP-mediated Ca 2+ signaling are preceded by alterations in the transcriptional profile of purinergic receptors, we analyzed the expression of a panel of P2X ionotropic and P2Y metabotropic purinergic receptors using real-time RT-PCR and found significant and specific alterations in the suite of ATP-activated purinergic receptors during EGF-induced EMT in breast cancer cells. Our studies are the first to show that P2X 5 ionotropic receptors are enriched in the mesenchymal phenotype and that silencing of P2X 5 leads to a significant reduction (25%, P<0.05) in EGF-induced vimentin protein expression. Conclusions The acquisition of a new suite of cell surface purinergic receptors is a feature of EGF-mediated EMT in MDA-MB-468 breast cancer cells. Such changes may impart advantageous phenotypic traits and represent a novel mechanism for the targeting of cancer metastasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fibroblast growth factors (FGFs) are potent mitogens, morphogens, and inducers of angiogenesis, and FGF signaling governs the genesis of diverse tissues and organs from the earliest stages. With such fundamental embryonic and homeostatic roles, it follows that aberrant FGF signaling underlies a variety of diseases. Pathological modifications to FGF expression are known to cause salivary gland aplasia and autosomal dominant hypophosphatemic rickets, while mutations in FGF receptors (FGFRs) result in a range of skeletal dysplasias. Anomalous FGF signaling is also associated with cancer development and progression. Examples include the overexpression of FGF2 and FGF6 in prostate cancer, and FGF8 overexpression in breast and prostate cancers. Alterations in FGF signaling regulators also impact tumorigenesis, which is exemplified by the down-regulation of Sprouty 1, a negative regulator of FGF signaling, in prostate cancer. In addition, several FGFRs are mutated in human cancers (including FGFR2 in gastric cancer and FGFR3 in bladder cancer). We recently identified intriguing alterations in the FGF pathway in a novel model of bladder carcinoma that consists of a parental cell line (TSU-Pr1/T24) and two sublines with increasing metastatic potential (TSU-Pr1-B1 and TSU-Pr1-B2), which were derived successively through in vivo cycling. It was found that the increasingly metastatic sublines (TSU-Pr1-B1 and TSU-Pr1-B2) had undergone a mesenchymal to epithelial transition. FGFR2IIIc expression, which is normally expressed in mesenchymal cells, was increased in the epithelial-like TSU-Pr1-B1 and TSU-Pr1-B2 sublines and FGFR2 knock-down was associated with the reversion of cells from an epithelial to a mesenchymal phenotype. These observations suggest that modified FGF pathway signaling should be considered when studying other cancer types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conversion of an epithelial cell to a mesenchymal cell is critical to metazoan embryogenesis and a de. ning structural feature of organ development. Current interest in this process, which is described as an epithelial- mesenchymal transition (EMT), stems from its developmental importance and its involvement in several adult pathologies. Interest and research in EMT are currently at a high level, as seen by the attendance at the recent EMT meeting in Vancouver, Canada (October 1-3, 2005). The meeting, which was hosted by The EMT International Association, was the second international EMT meeting, the . rst being held in Port Douglas, Queensland, Australia in October 2003. The EMT International Association was formed in 2002 to provide an international body for those interested in EMT and the reverse process, mesenchymal-epithelial transition, and, most importantly, to bring together those working on EMT in development, cancer, . brosis, and pathology. These themes continued during the recent meeting in Vancouver. Discussion at the Vancouver meeting spanned several areas of research, including signaling pathway activation of EMT and the transcription factors and gene targets involved. Also covered in detail was the basic cell biology of EMT and its role in cancer and . brosis, as well as the identi. cation of new markers to facilitate the observation of EMT in vivo. This is particularly important because the potential contribution of EMT during neoplasia is the subject of vigorous scientific debate (Tarin, D., E.W. Thompson, and D.F. Newgreen. 2005. Cancer Res. 65:5996-6000; Thompson, E.W., D.F. Newgreen, and D. Tarin. 2005. Cancer Res. 65:5991-5995).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancer is one of the most life-threatening diseases with many forms still regarded as incurable. The conventional cancer treatments have unwanted side effects such as the death of normal cells. A therapy that can accurately target and effectively kill tumor cells could address the inadequacies of the available therapies. Atmospheric gas plasmas (AGP) that are able to specifically kill cancerous cells offer a promising alternative approach compared to conventional therapies. AGP have been shown to exploit tumor-specific genetic defects and a recent trial in mice has confirmed its antitumor effects. The mechanism by which the AGP act on tumor cells but not normal cells is not fully understood. A review of the current literature suggests that reactive oxygen species (ROS) generated by AGP induce death of cancer cells by impairing the function of intracellular regulatory factors. The majority of cancer cells are defective in tumor suppressors that interfere normal cell growth pathways. It appears that pro-oncogene or tumor suppressor-dependent regulation of antioxidant/or ROS signaling pathways may be involved in AGP-induced cancer cell death. The toxic effects of ROS are mitigated by normal cells by adjustment of their metabolic pathways. On the other hand, tumor cells are mostly defective in several regulatory signaling pathways which lead to the loss of metabolic balance within the cells and consequently, the regulation of cell growth. This review article evaluates the impact of AGP on the activation of cellular signaling and its importance for exploring mechanisms for safe and efficient anticancer therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fields of molecular biology and cell biology are being flooded with complex genomic and proteomic datasets of large dimensions. We now recognize that each molecule in the cell and tissue can no longer be viewed as an isolated entity. Instead, each molecule must be considered as one member of an interacting network. Consequently, there is an urgent need for mathematical models to understand the behavior of cell signaling networks in health and in disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular interactions that underlie pathophysiological states are being elucidated using techniques that profile proteomicend points in cellular systems. Within the field of cancer research, protein interaction networks play pivotal roles in the establishment and maintenance of the hallmarks of malignancy, including cell division, invasion, and migration. Multiple complementary tools enable a multifaceted view of how signal protein pathway alterations contribute to pathophysiological states.One pivotal technique is signal pathway profiling of patient tissue specimens. This microanalysis technology provides a proteomic snapshot at one point in time of cells directly procured from the native context of a tumor micro environment. To study the adaptive patterns of signal pathway events over time, before and after experimental therapy, it is necessary to obtain biopsies from patients before, during, and after therapy. A complementary approach is the profiling of cultured cell lines with and without treatment. Cultured cell models provide the opportunity to study short-term signal changes occurring over minutes to hours. Through this type of system, the effects of particular pharmacological agents may be used to test the effects of signal pathway inhibition or activation on multiple endpoints within a pathway. The complexity of the data generated has necessitated the development of mathematical models for optimal interpretation of interrelated signaling pathways. In combination,clinical proteomic biopsy profiling, tissue culture proteomic profiling, and mathematical modeling synergistically enable a deeper understanding of how protein associations lead to disease states and present new insights into the design of therapeutic regimens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geminin was identified in Xenopus as a dual function protein involved in the regulation of DNA replication and neural differentiation. In Xenopus, Geminin acts to antagonize the Brahma (Brm) chromatin-remodeling protein, Brg1, during neural differentiation. Here, we investigate the interaction of Geminin with the Brm complex during Drosophila development. We demonstrate that Drosophila Geminin (Gem) interacts antagonistically with the Brm–BAP complex during wing development. Moreover, we show in vivo during wing development and biochemically that Brm acts to promote EGFR–Ras–MAPK signaling, as indicated by its effects on pERK levels, while Gem opposes this. Furthermore, gem and brm alleles modulate the wing phenotype of a Raf gain-of-function mutant and the eye phenotype of a EGFR gain-of-function mutant. Western analysis revealed that Gem over-expression in a background compromised for Brm function reduces Mek (MAPKK/Sor) protein levels, consistent with the decrease in ERK activation observed. Taken together, our results show that Gem and Brm act antagonistically to modulate the EGFR–Ras–MAPK signaling pathway, by affecting Mek levels during Drosophila development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lymphatic vessels guide interstitial fluid, modulate immune responses by regulating leukocyte and antigen trafficking to lymph nodes, and in a cancer setting enable tumor cells to track to regional lymph nodes. The aim of the study was to determine whether primary murine lymphatic endothelial cells (mLECs) show conserved vascular endothelial growth factor (VEGF) signaling pathways with human LECs (hLECs). LECs were successfully isolated from murine dermis and prostate. Similar to hLECs, vascular endothelial growth factor (VEGF) family ligands activated MAPK and pAkt intracellular signaling pathways in mLECs. We describe a robust protocol for isolation of mLECs which, by harnessing the power of transgenic and knockout mouse models, will be a useful tool to study how LEC phenotype contributes to alterations in lymphatic vessel formation and function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Olfactomedin-4 (OLFM-4) is an extracellular matrix protein that is highly expressed in human endometrium. We have examined the regulation and function of OLFM-4 in normal endometrium and in cases of endometriosis and endometrial cancer. OLFM-4 expression levels are highest in proliferative-phase endometrium, and 17 beta-estradiol up-regulates OLFM-4 mRNA in endometrial explant cultures. Using the luciferase reporter under control of the OLFM-4 promoter, it was shown that both 17 beta-estradiol and OH-tamoxifen induce luciferase activity, and epidermal growth factor receptor-1 is required for this estrogenic response. In turn, EGF activates the OLFM-4 promoter, and estrogen receptor-alpha is needed for the complete EGF response. The cellular functions of OLFM-4 were examined by its expression in OLFM-4-negative HEK-293 cells, which resulted in decreased vimentin expression and cell adherence as well as increased apoptosis resistance. In cases of endometriosis and endometrial cancer, OLFM-4 expression correlated with the presence of epidermal growth factor receptor-1 and estrogen receptor-alpha (or estrogen signaling). An increase of OLFM-4 mRNA was observed in the endometrium of endometriosis patients. No change in OLFM-4 expression levels were observed in patients with endometrial cancer relative with controts. In conclusion, cross-talk between estrogen and EGF signaling regulates OLFM-4 expression. The role of OLFM-4 in endometrial tissue remodeling before the secretory phase and during the predisposition and early events in endometriosis can be postulated but requires additional investigation. (Am J Pathol 2010, 177:2495-2508: DOI: 10.2353/ajpath.2010.100026

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leucine is a key amino acid for initiating translation in muscle cells, but the dose-dependent effects of leucine on intracellular signaling are poorly characterized. This study examined the effect that increasing doses of leucine would have on changes in mechanistic target of rapamycin (mTOR)–mediated signaling, rates of protein synthesis, and cell size in C2C12 cells. We hypothesized that a leucine “threshold” exists, which represents the minimum stimulus required to initiate mTOR signaling in muscle cells. Acute exposure to 1.5, 3.2, 5.0, and 16.1 mM leucine increased phosphorylation of mTORSer2448 (~1.4-fold; P < .04), 4E-BP1 Thr37/46 (~1.9-fold; P < .001), and rpS6Ser235/6 (~2.3-fold; P < .001). However, only p70S6kThr389 exhibited a dose-dependent response to leucine with all treatments higher than control (~4-fold; P < .001) and at least 5 mM higher than the 1.5-mM concentration (1.2-fold; P < .02). Rates of protein synthesis were not altered by any treatment. Seven days of exposure to 0.5, 1.5, 5.0, and 16.5 mM leucine resulted in an increase in cell size in at least 5 mM treatments (~1.6-fold, P < .001 vs control). Our findings indicate that even at low leucine concentrations, phosphorylation of proteins regulating translation initiation signaling is enhanced. The phosphorylation of p70S6kThr389 follows a leucine dose-response relationship, although this was not reflected by the acute protein synthetic response. Nevertheless, under the conditions of the present study, it appears that leucine concentrations of at least 5 mM are necessary to enhance cell growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Irregular atrial pressure, defective folate and cholesterol metabolism contribute to the pathogenesis of hypertension. However, little is known about the combined roles of the methylenetetrahydrofolate reductase (MTHFR), apolipoprotein-E (ApoE) and angiotensin-converting enzyme (ACE) genes, which are involved in metabolism and homeostasis. The objective of this study is to investigate the association of the MTHFR 677 C>T and 1298A>C, ACE insertion–deletion (I/D) and ApoE genetic polymorphisms with hypertension and to further explore the epistasis interactions that are involved in these mechanisms. A total of 594 subjects, including 348 normotensive and 246 hypertensive ischemic stroke subjects were recruited. The MTHFR 677 C>T and 1298A>C, ACE I/D and ApoEpolymorphisms were genotyped and the epistasis interaction were analyzed. The MTHFR 677 C>T and ApoE polymorphisms demonstrated significant associations with susceptibility to hypertension in multiple logistic regression models, multifactor dimensionality reduction and a classification and regression tree. In addition, the logistic regression model demonstrated that significant interactions between the ApoE E3E3, E2E4, E2E2 and MTHFR 677 C>T polymorphisms existed. In conclusion, the results of this epistasis study indicated significant association between the ApoE and MTHFR polymorphisms and hypertension.