137 resultados para SEQUENTIAL EXTRACTION
Resumo:
Objective Uterine Papillary Serous Carcinoma (UPSC) is uncommon and accounts for less than 5% of all uterine cancers. Therefore the majority of evidence about the benefits of adjuvant treatment comes from retrospective case series. We conducted a prospective multi-centre non-randomized phase 2 clinical trial using four cycles of adjuvant paclitaxel plus carboplatin chemotherapy followed by pelvic radiotherapy, in order to evaluate the tolerability and safety of this approach. Methods This trial enrolled patients with newly diagnosed, previously untreated patients with stage 1b-4 (FIGO-1988) UPSC with a papillary serous component of at least 30%. Paclitaxel (175 mg/m2) and carboplatin (AUC 6) were administered on day 1 of each 3-week cycle for 4 cycles. Chemotherapy was followed by external beam radiotherapy to the whole pelvis (50.4 Gy over 5.5 weeks). Completion and toxicity of treatment (Common Toxicity Criteria, CTC) and quality of life measures were the primary outcome indicators. Results Twenty-nine of 31 patients completed treatment as planned. Dose reduction was needed in 9 patients (29%), treatment delay in 7 (23%), and treatment cessation in 2 patients (6.5%). Hematologic toxicity, grade 3 or 4 occurred in 19% (6/31) of patients. Patients' self-reported quality of life remained stable throughout treatment. Thirteen of the 29 patients with stages 1–3 disease (44.8%) recurred (average follow up 28.1 months, range 8–60 months). Conclusion This multimodal treatment is feasible, safe and tolerated reasonably well and would be suitable for use in multi-institutional prospective randomized clinical trials incorporating novel therapies in patients with UPSC.
Resumo:
When performances are evaluated they are very often presented in a sequential order. Previous research suggests that the sequential presentation of alternatives may induce systematic biases in the way performances are evaluated. Such a phenomenon has been scarcely studied in economics. Using a large dataset of performance evaluation in the Idol series (N=1522), this paper presents new evidence about the systematic biases in sequential evaluation of performances and the psychological phenomena at the origin of these biases.
Resumo:
Learning to operate algebraically is a complex process that is dependent upon extending arithmetic knowledge to the more complex concepts of algebra. Current research has shown a gap between arithmetic and algebraic knowledge and suggests a pre-algebraic level as a step between the two knowledge types. This paper examines arithmetic and algebraic knowledge from a cognitive perspective in an effort to determine what constitutes a pre-algebraic level of understanding. Results of a longitudinal study designed to investigate students' readiness for algebra are presented. Thirty-three students in Grades 7, 8, and 9 participated. A model for the transition from arithmetic to pre-algebra to algebra is proposed and students' understanding of relevant knowledge is discussed.
Resumo:
A randomized, double-blind, study was conducted to evaluate the safety, tolerability and immunogenicity of a live attenuated Japanese encephalitis chimeric virus vaccine (JE-CV) co-administered with live attenuated yellow fever (YF) vaccine (YF-17D strain; Stamaril(®), Sanofi Pasteur) or administered successively. Participants (n = 108) were randomized to receive: YF followed by JE-CV 30 days later, JE followed by YF 30 days later, or the co-administration of JE and YF followed or preceded by placebo 30 days later or earlier. Placebo was used in a double-dummy fashion to ensure masking. Neutralizing antibody titers against JE-CV, YF-17D and selected wild-type JE virus strains was determined using a 50% serum-dilution plaque reduction neutralization test. Seroconversion was defined as the appearance of a neutralizing antibody titer above the assay cut-off post-immunization when not present pre-injection at day 0, or a least a four-fold rise in neutralizing antibody titer measured before the pre-injection day 0 and later post vaccination samples. There were no serious adverse events. Most adverse events (AEs) after JE vaccination were mild to moderate in intensity, and similar to those reported following YF vaccination. Seroconversion to JE-CV was 100% and 91% in the JE/YF and YF/JE sequential vaccination groups, respectively, compared with 96% in the co-administration group. All participants seroconverted to YF vaccine and retained neutralizing titers above the assay cut-off at month six. Neutralizing antibodies against JE vaccine were detected in 82-100% of participants at month six. These results suggest that both vaccines may be successfully co-administered simultaneously or 30 days apart.
Resumo:
Automated analysis of the sentiments presented in online consumer feedbacks can facilitate both organizations’ business strategy development and individual consumers’ comparison shopping. Nevertheless, existing opinion mining methods either adopt a context-free sentiment classification approach or rely on a large number of manually annotated training examples to perform context sensitive sentiment classification. Guided by the design science research methodology, we illustrate the design, development, and evaluation of a novel fuzzy domain ontology based contextsensitive opinion mining system. Our novel ontology extraction mechanism underpinned by a variant of Kullback-Leibler divergence can automatically acquire contextual sentiment knowledge across various product domains to improve the sentiment analysis processes. Evaluated based on a benchmark dataset and real consumer reviews collected from Amazon.com, our system shows remarkable performance improvement over the context-free baseline.
Resumo:
The use of appropriate features to characterise an output class or object is critical for all classification problems. In order to find optimal feature descriptors for vegetation species classification in a power line corridor monitoring application, this article evaluates the capability of several spectral and texture features. A new idea of spectral–texture feature descriptor is proposed by incorporating spectral vegetation indices in statistical moment features. The proposed method is evaluated against several classic texture feature descriptors. Object-based classification method is used and a support vector machine is employed as the benchmark classifier. Individual tree crowns are first detected and segmented from aerial images and different feature vectors are extracted to represent each tree crown. The experimental results showed that the proposed spectral moment features outperform or can at least compare with the state-of-the-art texture descriptors in terms of classification accuracy. A comprehensive quantitative evaluation using receiver operating characteristic space analysis further demonstrates the strength of the proposed feature descriptors.
Resumo:
Robust, affine covariant, feature extractors provide a means to extract correspondences between images captured by widely separated cameras. Advances in wide baseline correspondence extraction require looking beyond the robust feature extraction and matching approach. This study examines new techniques of extracting correspondences that take advantage of information contained in affine feature matches. Methods of improving the accuracy of a set of putative matches, eliminating incorrect matches and extracting large numbers of additional correspondences are explored. It is assumed that knowledge of the camera geometry is not available and not immediately recoverable. The new techniques are evaluated by means of an epipolar geometry estimation task. It is shown that these methods enable the computation of camera geometry in many cases where existing feature extractors cannot produce sufficient numbers of accurate correspondences.
Resumo:
Most web service discovery systems use keyword-based search algorithms and, although partially successful, sometimes fail to satisfy some users information needs. This has given rise to several semantics-based approaches that look to go beyond simple attribute matching and try to capture the semantics of services. However, the results reported in the literature vary and in many cases are worse than the results obtained by keyword-based systems. We believe the accuracy of the mechanisms used to extract tokens from the non-natural language sections of WSDL files directly affects the performance of these techniques, because some of them can be more sensitive to noise. In this paper three existing tokenization algorithms are evaluated and a new algorithm that outperforms all the algorithms found in the literature is introduced.
An approach to statistical lip modelling for speaker identification via chromatic feature extraction
Resumo:
This paper presents a novel technique for the tracking of moving lips for the purpose of speaker identification. In our system, a model of the lip contour is formed directly from chromatic information in the lip region. Iterative refinement of contour point estimates is not required. Colour features are extracted from the lips via concatenated profiles taken around the lip contour. Reduction of order in lip features is obtained via principal component analysis (PCA) followed by linear discriminant analysis (LDA). Statistical speaker models are built from the lip features based on the Gaussian mixture model (GMM). Identification experiments performed on the M2VTS1 database, show encouraging results