567 resultados para Robust localisation systems
Resumo:
Visual localization systems that are practical for autonomous vehicles in outdoor industrial applications must perform reliably in a wide range of conditions. Changing outdoor conditions cause difficulty by drastically altering the information available in the camera images. To confront the problem, we have developed a visual localization system that uses a surveyed three-dimensional (3D)-edge map of permanent structures in the environment. The map has the invariant properties necessary to achieve long-term robust operation. Previous 3D-edge map localization systems usually maintain a single pose hypothesis, making it difficult to initialize without an accurate prior pose estimate and also making them susceptible to misalignment with unmapped edges detected in the camera image. A multihypothesis particle filter is employed here to perform the initialization procedure with significant uncertainty in the vehicle's initial pose. A novel observation function for the particle filter is developed and evaluated against two existing functions. The new function is shown to further improve the abilities of the particle filter to converge given a very coarse estimate of the vehicle's initial pose. An intelligent exposure control algorithm is also developed that improves the quality of the pertinent information in the image. Results gathered over an entire sunny day and also during rainy weather illustrate that the localization system can operate in a wide range of outdoor conditions. The conclusion is that an invariant map, a robust multihypothesis localization algorithm, and an intelligent exposure control algorithm all combine to enable reliable visual localization through challenging outdoor conditions.
Resumo:
To navigate successfully in a novel environment a robot needs to be able to Simultaneously Localize And Map (SLAM) its surroundings. The most successful solutions to this problem so far have involved probabilistic algorithms, but there has been much promising work involving systems based on the workings of part of the rodent brain known as the hippocampus. In this paper we present a biologically plausible system called RatSLAM that uses competitive attractor networks to carry out SLAM in a probabilistic manner. The system can effectively perform parameter self-calibration and SLAM in one dimension. Tests in two dimensional environments revealed the inability of the RatSLAM system to maintain multiple pose hypotheses in the face of ambiguous visual input. These results support recent rat experimentation that suggest current competitive attractor models are not a complete solution to the hippocampal modelling problem.
Resumo:
The paper presents a fast and robust stereo object recognition method. The method is currently unable to identify the rotation of objects. This makes it very good at locating spheres which are rotationally independent. Approximate methods for located non-spherical objects have been developed. Fundamental to the method is that the correspondence problem is solved using information about the dimensions of the object being located. This is in contrast to previous stereo object recognition systems where the scene is first reconstructed by point matching techniques. The method is suitable for real-time application on low-power devices.
Resumo:
This paper investigates a wireless sensor network deployment - monitoring water quality, e.g. salinity and the level of the underground water table - in a remote tropical area of northern Australia. Our goal is to collect real time water quality measurements together with the amount of water being pumped out in the area, and investigate the impacts of current irrigation practice on the environments, in particular underground water salination. This is a challenging task featuring wide geographic area coverage (mean transmission range between nodes is more than 800 meters), highly variable radio propagations, high end-to-end packet delivery rate requirements, and hostile deployment environments. We have designed, implemented and deployed a sensor network system, which has been collecting water quality and flow measurements, e.g., water flow rate and water flow ticks for over one month. The preliminary results show that sensor networks are a promising solution to deploying a sustainable irrigation system, e.g., maximizing the amount of water pumped out from an area with minimum impact on water quality.
Resumo:
Performing reliable localisation and navigation within highly unstructured underwater coral reef environments is a difficult task at the best of times. Typical research and commercial underwater vehicles use expensive acoustic positioning and sonar systems which require significant external infrastructure to operate effectively. This paper is focused on the development of a robust vision-based motion estimation technique using low-cost sensors for performing real-time autonomous and untethered environmental monitoring tasks in the Great Barrier Reef without the use of acoustic positioning. The technique is experimentally shown to provide accurate odometry and terrain profile information suitable for input into the vehicle controller to perform a range of environmental monitoring tasks.
Resumo:
Performing reliable localisation and navigation within highly unstructured underwater coral reef environments is a difficult task at the best of times. Typical research and commercial underwater vehicles use expensive acoustic positioning and sonar systems which require significant external infrastructure to operate effectively. This paper is focused on the development of a robust vision-based motion estimation technique using low-cost sensors for performing real-time autonomous and untethered environmental monitoring tasks in the Great Barrier Reef without the use of acoustic positioning. The technique is experimentally shown to provide accurate odometry and terrain profile information suitable for input into the vehicle controller to perform a range of environmental monitoring tasks.
Resumo:
In this paper, we outline the sensing system used for the visual pose control of our experimental car-like vehicle, the autonomous tractor. The sensing system consists of a magnetic compass, an omnidirectional camera and a low-resolution odometry system. In this work, information from these sensors is fused using complementary filters. Complementary filters provide a means of fusing information from sensors with different characteristics in order to produce a more reliable estimate of the desired variable. Here, the range and bearing of landmarks observed by the vision system are fused with odometry information and a vehicle model, providing a more reliable estimate of these states. We also present a method of combining a compass sensor with odometry and a vehicle model to improve the heading estimate.
Resumo:
Over recent years, Unmanned Air Vehicles or UAVs have become a powerful tool for reconnaissance and surveillance tasks. These vehicles are now available in a broad size and capability range and are intended to fly in regions where the presence of onboard human pilots is either too risky or unnecessary. This paper describes the formulation and application of a design framework that supports the complex task of multidisciplinary design optimisation of UAVs systems via evolutionary computation. The framework includes a Graphical User Interface (GUI), a robust Evolutionary Algorithm optimiser named HAPEA, several design modules, mesh generators and post-processing capabilities in an integrated platform. These population –based algorithms such as EAs are good for cases problems where the search space can be multi-modal, non-convex or discontinuous, with multiple local minima and with noise, and also problems where we look for multiple solutions via Game Theory, namely a Nash equilibrium point or a Pareto set of non-dominated solutions. The application of the methodology is illustrated on conceptual and detailed multi-criteria and multidisciplinary shape design problems. Results indicate the practicality and robustness of the framework to find optimal shapes and trade—offs between the disciplinary analyses and to produce a set of non dominated solutions of an optimal Pareto front to the designer.
Resumo:
Robust image hashing seeks to transform a given input image into a shorter hashed version using a key-dependent non-invertible transform. These image hashes can be used for watermarking, image integrity authentication or image indexing for fast retrieval. This paper introduces a new method of generating image hashes based on extracting Higher Order Spectral features from the Radon projection of an input image. The feature extraction process is non-invertible, non-linear and different hashes can be produced from the same image through the use of random permutations of the input. We show that the transform is robust to typical image transformations such as JPEG compression, noise, scaling, rotation, smoothing and cropping. We evaluate our system using a verification-style framework based on calculating false match, false non-match likelihoods using the publicly available Uncompressed Colour Image database (UCID) of 1320 images. We also compare our results to Swaminathan’s Fourier-Mellin based hashing method with at least 1% EER improvement under noise, scaling and sharpening.
Resumo:
Traditional speech enhancement methods optimise signal-level criteria such as signal-to-noise ratio, but these approaches are sub-optimal for noise-robust speech recognition. Likelihood-maximising (LIMA) frameworks are an alternative that optimise parameters of enhancement algorithms based on state sequences generated for utterances with known transcriptions. Previous reports of LIMA frameworks have shown significant promise for improving speech recognition accuracies under additive background noise for a range of speech enhancement techniques. In this paper we discuss the drawbacks of the LIMA approach when multiple layers of acoustic mismatch are present – namely background noise and speaker accent. Experimentation using LIMA-based Mel-filterbank noise subtraction on American and Australian English in-car speech databases supports this discussion, demonstrating that inferior speech recognition performance occurs when a second layer of mismatch is seen during evaluation.
Resumo:
Traditional speech enhancement methods optimise signal-level criteria such as signal-to-noise ratio, but such approaches are sub-optimal for noise-robust speech recognition. Likelihood-maximising (LIMA) frameworks on the other hand, optimise the parameters of speech enhancement algorithms based on state sequences generated by a speech recogniser for utterances of known transcriptions. Previous applications of LIMA frameworks have generated a set of global enhancement parameters for all model states without taking in account the distribution of model occurrence, making optimisation susceptible to favouring frequently occurring models, in particular silence. In this paper, we demonstrate the existence of highly disproportionate phonetic distributions on two corpora with distinct speech tasks, and propose to normalise the influence of each phone based on a priori occurrence probabilities. Likelihood analysis and speech recognition experiments verify this approach for improving ASR performance in noisy environments.
Resumo:
This thesis addresses the problem of detecting and describing the same scene points in different wide-angle images taken by the same camera at different viewpoints. This is a core competency of many vision-based localisation tasks including visual odometry and visual place recognition. Wide-angle cameras have a large field of view that can exceed a full hemisphere, and the images they produce contain severe radial distortion. When compared to traditional narrow field of view perspective cameras, more accurate estimates of camera egomotion can be found using the images obtained with wide-angle cameras. The ability to accurately estimate camera egomotion is a fundamental primitive of visual odometry, and this is one of the reasons for the increased popularity in the use of wide-angle cameras for this task. Their large field of view also enables them to capture images of the same regions in a scene taken at very different viewpoints, and this makes them suited for visual place recognition. However, the ability to estimate the camera egomotion and recognise the same scene in two different images is dependent on the ability to reliably detect and describe the same scene points, or ‘keypoints’, in the images. Most algorithms used for this purpose are designed almost exclusively for perspective images. Applying algorithms designed for perspective images directly to wide-angle images is problematic as no account is made for the image distortion. The primary contribution of this thesis is the development of two novel keypoint detectors, and a method of keypoint description, designed for wide-angle images. Both reformulate the Scale- Invariant Feature Transform (SIFT) as an image processing operation on the sphere. As the image captured by any central projection wide-angle camera can be mapped to the sphere, applying these variants to an image on the sphere enables keypoints to be detected in a manner that is invariant to image distortion. Each of the variants is required to find the scale-space representation of an image on the sphere, and they differ in the approaches they used to do this. Extensive experiments using real and synthetically generated wide-angle images are used to validate the two new keypoint detectors and the method of keypoint description. The best of these two new keypoint detectors is applied to vision based localisation tasks including visual odometry and visual place recognition using outdoor wide-angle image sequences. As part of this work, the effect of keypoint coordinate selection on the accuracy of egomotion estimates using the Direct Linear Transform (DLT) is investigated, and a simple weighting scheme is proposed which attempts to account for the uncertainty of keypoint positions during detection. A word reliability metric is also developed for use within a visual ‘bag of words’ approach to place recognition.
Resumo:
In this paper we propose a new method for utilising phase information by complementing it with traditional magnitude-only spectral subtraction speech enhancement through Complex Spectrum Subtraction (CSS). The proposed approach has the following advantages over traditional magnitude-only spectral subtraction: (a) it introduces complementary information to the enhancement algorithm; (b) it reduces the total number of algorithmic parameters, and; (c) is designed for improving clean speech magnitude spectra and is therefore suitable for both automatic speech recognition (ASR) and speech perception applications. Oracle-based ASR experiments verify this approach, showing an average of 20% relative word accuracy improvements when accurate estimates of the phase spectrum are available. Based on sinusoidal analysis and assuming stationarity between observations (which is shown to be better approximated as the frame rate is increased), this paper also proposes a novel method for acquiring the phase information called Phase Estimation via Delay Projection (PEDEP). Further oracle ASR experiments validate the potential for the proposed PEDEP technique in ideal conditions. Realistic implementation of CSS with PEDEP shows performance comparable to state of the art spectral subtraction techniques in a range of 15-20 dB signal-to-noise ratio environments. These results clearly demonstrate the potential for using phase spectra in spectral subtractive enhancement applications, and at the same time highlight the need for deriving more accurate phase estimates in a wider range of noise conditions.