813 resultados para Road surface


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reliable budget/cost estimates for road maintenance and rehabilitation are subjected to uncertainties and variability in road asset condition and characteristics of road users. The CRC CI research project 2003-029-C ‘Maintenance Cost Prediction for Road’ developed a method for assessing variation and reliability in budget/cost estimates for road maintenance and rehabilitation. The method is based on probability-based reliable theory and statistical method. The next stage of the current project is to apply the developed method to predict maintenance/rehabilitation budgets/costs of large networks for strategic investment. The first task is to assess the variability of road data. This report presents initial results of the analysis in assessing the variability of road data. A case study of the analysis for dry non reactive soil is presented to demonstrate the concept in analysing the variability of road data for large road networks. In assessing the variability of road data, large road networks were categorised into categories with common characteristics according to soil and climatic conditions, pavement conditions, pavement types, surface types and annual average daily traffic. The probability distributions, statistical means, and standard deviation values of asset conditions and annual average daily traffic for each type were quantified. The probability distributions and the statistical information obtained in this analysis will be used to asset the variation and reliability in budget/cost estimates in later stage. Generally, we usually used mean values of asset data of each category as input values for investment analysis. The variability of asset data in each category is not taken into account. This analysis method demonstrated that it can be used for practical application taking into account the variability of road data in analysing large road networks for maintenance/rehabilitation investment analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stimulus for this project rose from the need to find an alternative solution to aging superstructures of road-bridge in low volume roads (LVR). The solution investigated, designed and consequently plans to construct, involved replacing an aging super-structure of a 10m span bridge with Flat-Bed Rail Wagon (FBRW). The main focus of this paper is to present alternate structural system for the design of the FBRW as road bridge deck conforming to AS5100. The structural adequacy of the primary members of the FBRW was first validated using full scale experimental investigation to AS5100 serviceability and ultimate limit state loading. The bare FBRW was further developed to include a running surface. Two options were evaluated during the design phase, namely timber and reinforced concrete. First option, which is presented here, involved strengthening of the FBRW using numerous steel sections and overlaying the bridge deck with timber planks. The idea of this approach was to use all the primary and secondary members of the FBRW in load sharing and to provide additional members where weaknesses in the original members arose. The second option, which was the preferred option for construction, involved use of primary members only with an overlaying reinforced concrete slab deck. This option minimised the risk associated with any uncertainty of secondary members to its structural adequacy. The paper will report selected results of the experiment as well as the design phases of option one with conclusions highlighting the viability of option 1 and its limitations.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Road accidents are of great concerns for road and transport departments around world, which cause tremendous loss and dangers for public. Reducing accident rates and crash severity are imperative goals that governments, road and transport authorities, and researchers are aimed to achieve. In Australia, road crash trauma costs the nation A$ 15 billion annually. Five people are killed, and 550 are injured every day. Each fatality costs the taxpayer A$1.7 million. Serious injury cases can cost the taxpayer many times the cost of a fatality. Crashes are in general uncontrolled events and are dependent on a number of interrelated factors such as driver behaviour, traffic conditions, travel speed, road geometry and condition, and vehicle characteristics (e.g. tyre type pressure and condition, and suspension type and condition). Skid resistance is considered one of the most important surface characteristics as it has a direct impact on traffic safety. Attempts have been made worldwide to study the relationship between skid resistance and road crashes. Most of these studies used the statistical regression and correlation methods in analysing the relationships between skid resistance and road crashes. The outcomes from these studies provided mix results and not conclusive. The objective of this paper is to present a probability-based method of an ongoing study in identifying the relationship between skid resistance and road crashes. Historical skid resistance and crash data of a road network located in the tropical east coast of Queensland were analysed using the probability-based method. Analysis methodology and results of the relationships between skid resistance, road characteristics and crashes are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Films found on the windows of residential buildings have been studied. The main aim of the paper was to assess the roles of the films in the accumulation of potentially toxic chemicals in residential buildings. Thus the elemental and polycyclic aromatic hydrocarbon compositions of the surface films from the glass windows of eighteen residential buildings were examined. The presence of sample amounts of inorganic elements (4.0–1.2 × 106 μg m−2) and polycyclic aromatic hydrocarbons in the films (BDL - 620.1 ng m−2) has implications for human exposure and the fate of pollutants in the urban environment. To facilitate the interpretation of the results, data matrices consisting of the chemical composition of the films and the building characteristics were subjected to multivariate data analysis methods, and these revealed that the accumulation of the chemicals was strongly dependent on building characteristics such as the type of glass used for the window, the distance from a major road, age of the building, distance from an industrial activity, number of smokers in the building and frequency of cooking in the buildings. Thus, building characteristics which minimize the accumulation of pollutants on the surface films need to be encouraged.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solids are widely identified as a carrier of harmful pollutants in stormwater runoff exerting a significant risk to receiving waters. This paper outlines the findings of an in-depth investigation on heavy metal adsorption to solids surfaces. Pollutant build-up samples collected from sixteen road sites in residential, industrial and commercial land uses were separated into four particle size ranges and analysed for a range of physico-chemical parameters and nine heavy metals including Iron (Fe), Aluminum (Al), Lead (Pb), Zinc (Zn), Cadmium (Cd), Chromium (Cr), Manganese (Mn), Nickel (Ni) and Copper (Cu). High specific surface area (SSA) and total organic carbon (TOC) content in finer particle size ranges was noted, thus confirming strong correlations with heavy metals. Based on their physico-chemical characteristics, two different types of solids originating from traffic and soil sources were identified. Solids generated by traffic were associated with high loads of heavy metals such as Cd and Cr with strong correlation with SSA. This suggested the existence of surface dependent bonds such as cation exchange between heavy metals and solids. In contrast, Fe, Al and Mn which can be attributed to soil inputs showed strong correlation with TOC suggesting strong bonds such as chemsorption. Zn was found to be primarily attached to solids by bonding with the oxides of Fe, Al and Mn. The data analysis also confirmed the predominance of the finer fraction, with 70% of the solids being finer than 150 µm and containing 60% of the heavy metal pollutant load.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pollutant impacts of urban stormwater runoff on receiving waters are well documented in research literature. However, it is road surfaces that are commonly identified as the significant pollutant source. This paper presents the outcomes of an extensive program of research into the role of roof surfaces in urban water quality with particular focus on solids, nutrients and organic carbon. The outcomes confirmed that roof surfaces play an important role in influencing the pollutant characteristics of urban stormwater runoff. Pollutant build-up and wash-off characteristics for roads and roof surfaces were found to be appreciably different. The pollutant wash-off characteristics exhibited by roof surfaces show that it influences the first flush phenomenon more significantly than road surfaces. In most urban catchments, as roof surfaces constitutes a higher fraction of impervious area compared to road surfaces, it is important that the pollutant generation role of roof surfaces is specifically taken into consideration in stormwater quality mitigation strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Road safety barriers are used to redirect traffic at roadside work-zones. When filled with water, these barriers are able to withstand low to moderate impact speeds up to 50kmh-1. Despite this feature, Portable Water-filled barriers (PWFB) face challenges such as large lateral displacements, tearing and breakage during impact; especially at higher speeds. This study explores the use of composite action to enhance the crashworthiness of PWFBs and enable their usage at higher speeds. Initially, energy absorption capability of water in PWFB is investigated. Then, composite action of the PWFB with the introduction of steel frame is considered to evaluate its enhanced impact performance. Findings of the study show that the initial height of the impact must be lower than the free surface level of water in a PWFB in order for the water to provide significant crash energy absorption. In general, an impact of a road barrier with 80% filled is a good estimation. Furthermore, the addition of a composite structure greatly reduces the probability of tearing by decreasing the strain and impact energy transferred to the shell container. This allows the water to remain longer in the barrier to absorb energy via inertial displacements and sloshing response. Information from this research will aid in the design of new generation roadside safety structures aimed to increase safety in modern roadways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Road safety barriers are used to redirect traffic at roadside work-zones. When filled with water, these barriers are able to withstand low to moderate impact speeds up to 50kmh-1. Despite this feature, there are challenges when using portable water-filled barriers (PWFBs) such as large lateral displacements as well as tearing and breakage during impact, especially at higher speeds. In this study, the authors explore the use of composite action to enhance the crashworthiness of PWFBs and enable their use at higher speeds. Initially, we investigated the energy absorption capability of water in PWFB. Then, we considered the composite action of a PWFB with the introduction of a steel frame to evaluate its impact on performance. Findings of the study show that the initial height of impact must be lower than the free surface level of water in a PWFB for the water to provide significant crash energy absorption. In general, impact of a road barrier that is 80% filled is a good estimation. Furthermore, the addition of a composite structure greatly reduces the probability of tearing by decreasing the strain and impact energy transferred to the shell container. This allows the water to remain longer in the barrier to absorb energy via inertial displacement and sloshing response. Information from this research will aid in the design of next generation roadside safety structures aimed to increase safety on modern roadways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite common knowledge that the metal content adsorbed by fine particles is relatively higher compared to coarser particles, the reasons for this phenomenon has gained little research attention. The research study discussed in the paper investigated the variations in metal content for different particle sizes of solids associated with pollutant build-up on urban road surfaces. Data analysis confirmed that parameters favourable for metal adsorption to solids such as specific surface area, organic carbon content, effective cation exchange capacity and clay forming minerals content decrease with the increase in particle size. Furthermore, the mineralogical composition of solids was found to be the governing factor influencing the specific surface area and effective cation exchange capacity. There is high quartz content in particles >150µm compared to particles <150µm. As particle size reduces below 150µm, the clay forming minerals content increases, providing favourable physical and chemical properties that influence adsorption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the recent manuscript published by Egodawatta et al. (2013), the authors investigated the build-up process of heavy metals (HMs) associated with road-deposited sediment (RDS) on residential road surfaces, and presented empirical models for the prediction of both the surface loads and build-up rates of HMs on these surfaces...

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The construction and operation of infrastructure assets can have significant impact on society and the region. Using a sustainability assessment framework can be an effective means to build sustainability aspects into the design, construction and operation of infrastructure assets. The conventional evaluation processes and procedures for infrastructure projects do not necessarily measure the qualitative/quantitative effectiveness of all aspects of sustainability: environment, social wellbeing and economy. As a result, a few infrastructure sustainability rating schemes have been developed with a view to assess the level of sustainability attained in the infrastructure projects. These include: Infrastructure Sustainability (Australia); CEEQUAL (UK); and Envision (USA). In addition, road sector specific sustainability rating schemes such as Greenroads (USA) and Invest (Australia) have also been developed. These schemes address several aspects of sustainability with varying emphasis (weightings) on areas such as: use of resources; emission, pollution and waste; ecology; people and place; management and governance; and innovation. The attainment of sustainability of an infrastructure project depends largely on addressing the whole-of-life environmental issues. This study has analysed the rating schemes’ coverage of different environmental components for the road infrastructure under the five phases of a project: material, construction, use, maintenance and end-of-life. This is based on a comprehensive life cycle assessment (LCA) system boundary. The findings indicate that there is a need for the schemes to consider key (high impact) life cycle environmental components such as traffic congestion during construction, rolling resistance due to surface roughness and structural stiffness of the pavement, albedo, lighting, and end-of-life management (recycling) to deliver sustainable road projects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a performance-based optimisation approach for conducting trade-off analysis between safety (roads) and condition (bridges and roads). Safety was based on potential for improvement (PFI). Road condition was based on surface distresses and bridge condition was based on apparent age per subcomponent. The analysis uses a non-monetised optimisation that expanded upon classical Pareto optimality by observing performance across time. It was found that achievement of good results was conditioned by the availability of early age treatments and impacted by a frontier effect preventing the optimisation algorithm from realising of the long-term benefits of deploying actions when approaching the end of the analysis period. A disaggregated bridge condition index proved capable of improving levels of service in bridge subcomponents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The implementation of pavement management seems to ignore road safety, with its focus being mainly on infrastructure condition. Safety management as part of pavement management should consider various means of reducing the frequency of vehicle crashes by allocating corrective measures to mitigate accident exposure, as well as reduce accident severity and likelihood. However, it is common that lack of accident records and crash contributing factors impedes incorporating safety into pavement management. This paper presents a case study for the initial development of pavement management systems considering data limitations for 3000 km of Tanzania’s national roads. A performance based optimization utilizes indices for safety and surface condition to allocate corrective measures. A modified Pareto analysis capable of accounting for annual performance and of balancing resources to achieve good surface condition and low levels of safety was applied. Tradeoff analysis for the case study found the need to assign 30% relevance to condition and 70% to road safety. Safety and condition deficiencies were corrected within 5 years with the majority of improvements dedicated to surface treatments and some geometric corrections. Large investments for correcting geometric issues were observed in years two and three if more money was made available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this article is to show the applicability and benefits of the techniques of design of experiments as an optimization tool for discrete simulation models. The simulated systems are computational representations of real-life systems; its characteristics include a constant evolution that follows the occurrence of discrete events along the time. In this study, a production system, designed with the business philosophy JIT (Just in Time) is used, which seeks to achieve excellence in organizations through waste reduction in all the operational aspects. The most typical tool of JIT systems is the KANBAN production control that seeks to synchronize demand with flow of materials, minimize work in process, and define production metrics. Using experimental design techniques for stochastic optimization, the impact of the operational factors on the efficiency of the KANBAN / CONWIP simulation model is analyzed. The results show the effectiveness of the integration of experimental design techniques and discrete simulation models in the calculation of the operational parameters. Furthermore, the reliability of the methodologies found was improved with a new statistical consideration.