50 resultados para Railroad transportation
Resumo:
Airports are currently being pressured to operate in a more environmentally-sensitive manner; as a response, airports have integrated environmental policies into their operations. However, environmental concerns regarding automobile traffic and related emissions have yet to be addressed. While the automobile is the dominant air passenger ground transportation mode at US airports, services facilitating automobile usage including public parking and car rentals are a major airport revenue source. Less than 20 US hub airports have direct access to rail-based transportation modes. New rail transportation projects serving additional airports are either being consideration or under construction. Regardless of whether an airport has direct access to rail-based transportation modes, the air passenger ground transportation modal split at US airports remain low in comparison to those in Asia and Europe. The high cost of providing additional US airports with direct rail connections in an era of severe governmental budgetary cutbacks is making the “build it and they will come” mindset untenable. Governmental policies are but one factor determining whether programs increasing transit usage results in automobile traffic reductions and related emissions. This study reveals that a significant percentage of the busiest US airports do not have policies fostering increases in the air passenger ground transportation modal split. A case study of one US airport is presented that has successfully adopted a transit first policy to achieve a high air passenger ground transportation modal split and facilitate the availability of rail-based transportation services.
Resumo:
Objective: This research investigates older people’s use of transportation to develop strategies for age-friendly transportation within the community. Methods: Data for this study was derived from Global Positioning System (GPS) tracking of thirteen people aged 55 years and older, together with self-report information recorded in travel diaries about daily activities undertaken outside the home over a period of seven days. Semi-structured interviews were aided by individual maps to investigate engagement in out-of-home activities and verify the recorded GPS data. Results: Overall, participants were highly reliant on the car for daily commuting. Walking, biking and public transport options were unattractive due to environmental conditions, accessibility and usability. Conclusion: Participation within the community and access to services is facilitated by private and public transportation. It is therefore critical to address accessibility and usability issues faced by older people to enable them to maintain their mobility, and ensure access to services, especially when driving ceases.
Resumo:
Population ageing is one of the major challenges of the 21st century and societies need to optimize opportunities for active ageing. This thesis explored how the built environment impacts the mobility and participation within the community. A combination of person-based GPS tracking and in-depth interviews was used to collect data on transportation use and engagement in activities of older people living within Brisbane. It showed that the built environment has a strong impact on mobility. To enable healthy and active ageing modern communities need to overcome car dependency and provide mobility options that are tailored towards older people’s needs.
Resumo:
In this paper, a demand-responsive decision support system is proposed by integrating the operations of coal shipment, coal stockpiles and coal railing within a whole system. A generic and flexible scheduling optimisation methodology is developed to identify, represent, model, solve and analyse the coal transport problem in a standard and convenient way. As a result, the integrated train-stockpile-ship timetable is created and optimised for improving overall efficiency of coal transport system. A comprehensive sensitivity analysis based on extensive computational experiments is conducted to validate the proposed methodology. The mathematical proposition and proof are concluded as technical and insightful advices for industry practice. The proposed methodology provides better decision making on how to assign rail rolling-stocks and upgrade infrastructure in order to significantly improve capacity utilisation with the best resource-effectiveness ratio. The proposed decision support system with train-stockpile-ship scheduling optimisation techniques is promising to be applied in railway or mining industry, especially as a useful quantitative decision making tool on how to use more current rolling-stocks or whether to buy additional rolling-stocks for mining transportation.
Resumo:
Temporary Traffic Control Plans (TCP’s), which provide construction phasing to maintain traffic during construction operations, are integral component of highway construction project design. Using the initial design, designers develop estimated quantities for the required TCP devices that become the basis for bids submitted by highway contractors. However, actual as-built quantities are often significantly different from the engineer’s original estimate. The total cost of TCP phasing on highway construction projects amounts to 6–10% of the total construction cost. Variations between engineer estimated quantities and final quantities contribute to reduced cost control, increased chances of cost related litigations, and bid rankings and selection. Statistical analyses of over 2000 highway construction projects were performed to determine the sources of variation, which later were used as the basis of development for an automated-hybrid prediction model that uses multiple regressions and heuristic rules to provide accurate TCP quantities and costs. The predictive accuracy of the model developed was demonstrated through several case studies.
Resumo:
This paper uses a correlated multinomial logit model and a Poisson regression model to measure the factors affecting demand for different types of transportation by elderly and disabled people in rural Virginia. The major results are: (a) A paratransit system providing door-to-door service is highly valued by transportation-handicapped people; (b) Taxis are probably a potential but inferior alternative even when subsidized; (c) Buses are a poor alternative, especially in rural areas where distances to bus stops may be long; (d) Making buses handicap-accessible would have a statistically significant but small effect on mode choice; (e) Demand is price inelastic; and (f) The total number of trips taken is insensitive to mode availability and characteristics. These results suggest that transportation-handicapped people take a limited number of trips. Those they do take are in some sense necessary (given the low elasticity with respect to mode price or availability). People will substitute away from relying upon others when appropriate transportation is available, at least to some degree. But such transportation needs to be flexible enough to meet the needs of the people involved.
Resumo:
Highway construction projects have direct impacts on adjacent businesses. The nature and the degree of impact depend on individual business characterization and project specific factors. The type of business is also a relevant factor in predicting the impact of transportation construction projects. This paper presents the results of research focused on developing an in-depth understanding of these relationships. The study includes project case studies of three transportation construction projects in Florida. Surveys were conducted with all adjacent businesses, which were combined with analyses of the business accommodation procedures employed by State Highway Agencies (SHAs) nationwide to provide measure the efficiency of present rules. The results include an analysis of differing priorities for different classification of businesses and development of design and construction management best practices to better accommodate businesses during highway construction. A pilot project that employed business accommodation principles devised in this research, and improvements to business accommodations observed were compared to cases where no measures were taken.
Resumo:
Transportation construction is substantially different from other construction fields due to widespread use of unit price bidding and competitive contract awarding. Thus, the potential for change orders has been the main source of unbalanced bidding for contractors, which can be described as substantial increases in work quantity or reasonable changes to the initial design provided by the State Highway Agencies (SHAs). It is important to understand the causes of the change orders as cost related issues are the main reason for contract disputes. We have analyzed a large dataset from a major SHA to identify project related and environmental factors that affect the change order costs. The results of the study can be instrumental in assessing the increased costs associated with change orders and better management measures can be taken to mitigate their effects.
Resumo:
Locomotion and autonomy in humanoid robots is of utmost importance in integrating them into social and community service type roles. However, the limited range and speed of these robots severely limits their ability to be deployed in situations where fast response is necessary. While the ability for a humanoid to drive a vehicle would aide in increasing their overall mobility, the ability to mount and dismount a vehicle designed for human occupants is a non-trivial problem. To address this issue, this paper presents an innovative approach to enabling a humanoid robot to mount and dismount a vehicle by proposing a simple mounting bracket involving no moving parts. In conjunction with a purpose built robotic vehicle, the mounting bracket successfully allowed a humanoid Nao robot to mount, dismount and drive the vehicle.
Resumo:
It is well known that, for major infrastructure networks such as electricity, gas, railway, road, and urban water networks, disruptions at one point have a knock on effect throughout the network. There is an impressive amount of individual research projects examining the vulnerability of critical infrastructure network. However, there is little understanding of the totality of the contribution made by these projects and their interrelationships. This makes their review a difficult process for both new and existing researchers in the field. To address this issue, a two-step literature review process is used, to provide an overview of the vulnerability of the transportation network in terms of four main themes - research objective, transportation mode, disruption scenario and vulnerability indicator –involving the analysis of related articles from 2001 to 2013. Two limitations of existing research are identified: (1) the limited amount of studies relating to multi-layer transportation network vulnerability analysis, and (2) the lack of evaluation methods to explore the relationship between structure vulnerability and dynamical functional vulnerability. In addition to indicating that more attention needs to be paid to these two aspects in future, the analysis provides a new avenue for the discovery of knowledge, as well as an improved understanding of transportation network vulnerability.
Resumo:
Determining the key variables of transportation disadvantage remains a great challenge as the variables are commonly selected using ad-hoc techniques. In order to identify the variables, this research develops a transportation disadvantage framework by manipulating the capability approach. Developed framework is statistically analysed using partial least square-based software to determine the framework fitness. The statistical analysis identifies mobility and socioeconomic variables that significantly influence transportation disadvantage. The research reveals the key socioeconomic variables for transportation disadvantage in the case of Brisbane, Australia as household structure, presence of dependent family member, vehicle ownership, and driving licence possession.