99 resultados para Radio-frequency plasma enhanced chemical vapor deposition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

High conductive graphene films can be grown on metal foils by chemical vapor deposition (CVD). We here analyzed the use of ethanol, an economic precursor, which results also safer than commonly-used methane. A comprehensive range of process parameters were explored in order to obtain graphene films with optimal characteristics in view of their use in optoelectronics and photovoltaics. Commercially-available and electro-polished copper foils were used as substrates. By finely tuning the CVD conditions, we obtained few-layer (2-4) graphene films with good conductivity (-500 Ohm/sq) and optical transmittance around 92-94% at 550 nm on unpolished copper foils. The growth on electro-polished copper provides instead predominantly mono-layer films with lower conductivity (>1000 Ohm/sq) and with a transmittance of 97.4% at 550 nm. As for the device properties, graphene with optimal properties as transparent conductive film were produced by CVD on standard copper with specific process conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphene films were produced by chemical vapor deposition (CVD) of pyridine on copper substrates. Pyridine-CVD is expected to lead to doped graphene by the insertion of nitrogen atoms in the growing sp2 carbon lattice, possibly improving the properties of graphene as a transparent conductive film. We here report on the influence that the CVD parameters (i.e., temperature and gas flow) have on the morphology, transmittance, and electrical conductivity of the graphene films grown with pyridine. A temperature range between 930 and 1070 °C was explored and the results were compared to those of pristine graphene grown by ethanol-CVD under the same process conditions. The films were characterized by atomic force microscopy, Raman and X-ray photoemission spectroscopy. The optical transmittance and electrical conductivity of the films were measured to evaluate their performance as transparent conductive electrodes. Graphene films grown by pyridine reached an electrical conductivity of 14.3 × 105 S/m. Such a high conductivity seems to be associated with the electronic doping induced by substitutional nitrogen atoms. In particular, at 930 °C the nitrogen/carbon ratio of pyridine-grown graphene reaches 3%, and its electrical conductivity is 40% higher than that of pristine graphene grown from ethanol-CVD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent advancements in the area of organic polymer applications demand novel and advanced materials with desirable surface, optical and electrical properties to employ in emerging technologies. This study examines the fabrication and characterization of polymer thin films from non-synthetic Terpinen-4-ol monomer using radio frequency plasma polymerization. The optical properties, thickness and roughness of the thin films were studied in the wavelength range 200–1000 nm using ellipsometry. The polymer thin films of thickness from 100 nm to 1000 nm were fabricated and the films exhibited smooth and defect-free surfaces. At 500 nm wavelength, the refractive index and extinction coefficient were found to be 1.55 and 0.0007 respectively. The energy gap was estimated to be 2.67 eV, the value falling into the semiconducting Eg region. The obtained optical and surface properties of Terpinen-4-ol based films substantiate their candidacy as a promising low-cost material with potential applications in electronics, optics, and biomedical industries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The choice of ethanol (C2H5OH) as carbon source in the Chemical Vapor Deposition (CVD) of graphene on copper foils can be considered as an attractive alternative among the commonly used hydrocarbons, such as methane (CH4) [1]. Ethanol, a safe, low cost and easy handling liquid precursor, offers fast and efficient growth kinetics with the synthesis of fullyformed graphene films in just few seconds [2]. In previous studies of graphene growth from ethanol, various research groups explored temperature ranges lower than 1000 °C, usually reported for methane-assisted CVD. In particular, the 650–850 °C and 900 °C ranges were investigated, respectively for 5 and 30 min growth time [3, 4]. Recently, our group reported the growth of highly-crystalline, few-layer graphene by ethanol-CVD in hydrogen flow (1– 100 sccm) at high temperatures (1000–1070 °C) using growth times typical of CH4-assisted synthesis (10–30 min) [5]. Furthermore, a synthesis time between 20 and 60 s in the same conditions was explored too. In such fast growth we demonstrated that fully-formed graphene films can be grown by exposing copper foils to a low partial pressure of ethanol (up to 2 Pa) in just 20 s [6] and we proposed that the rapid growth is related to an increase of the Cu catalyst efficiency due weak oxidizing nature of ethanol. Thus, the employment of such liquid precursor, in small concentrations, together with a reduced time of growth and very low pressure leads to highly efficient graphene synthesis. By this way, the complete coverage of a copper catalyst surface with high spatial uniformity can be obtained in a considerably lower time than when using methane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasma-based techniques offer many unique possibilities for the synthesis of various nanostructures both on the surface and in the plasma bulk. In contrast to the conventional chemical vapor deposition and some other techniques, plasma-based processes ensure high level of controllability, good quality of the produced nanomaterials, and reduced environmental risk. In this work, the authors briefly review the unique features of the plasma-enhanced chemical vapor deposition approaches, namely, the techniques based on inductively coupled, microwave, and arc discharges. Specifically, the authors consider the plasmas with the ion/electron density ranging from 10^10 to 10^14 cm−3, electron energy in the discharge up to ∼10 eV, and the operating pressure ranging from 1 to 10^4 Pa (up to 105 Pa for the atmospheric-pressure arc discharges). The operating frequencies of the discharges considered range from 460 kHz for the inductively coupled plasmas, and up to 2.45 GHz for the microwave plasmas. The features of the direct-current arc discharges are also examined. The authors also discuss the principles of operation of these systems, as well as the effects of the key plasma parameters on the conditions of nucleation and growth of the carbon nanostructures, mainly carbon nanotubes and graphene. Advantages and disadvantages of these plasma systems are considered. Future trends in the development of these plasma-based systems are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline silicon thin films were deposited on single-crystal silicon and glass substrates simultaneously by inductively coupled plasma-assisted chemical vapor deposition from the reactive silane reactant gas diluted with hydrogen at a substrate temperature of 200 °C. The effect of hydrogen dilution ratio X (X is defined as the flow rate ratio of hydrogen to silane gas), ranging from 1 to 20, on the structural and optical properties of the deposited films, is extensively investigated by Raman spectroscopy, X-ray diffraction, Fourier transform infrared absorption spectroscopy, UV/VIS spectroscopy, and scanning electron microscopy. Our experimental results reveal that, with the increase of the hydrogen dilution ratio X, the deposition rate Rd and hydrogen content CH are reduced while the crystalline fraction Fc, mean grain size δ and optical bandgap ETauc are increased. In comparison with other plasma enhanced chemical vapor deposition methods of nanocrystalline silicon films where a very high hydrogen dilution ratio X is routinely required (e.g. X > 16), we have achieved nanocrystalline silicon films at a very low hydrogen dilution ratio of 1, featuring a high deposition rate of 1.57 nm/s, a high crystalline fraction of 67.1%, a very low hydrogen content of 4.4 at.%, an optical bandgap of 1.89 eV, and an almost vertically aligned columnar structure with a mean grain size of approximately 19 nm. We have also shown that a sufficient amount of atomic hydrogen on the growth surface essential for the formation of nanocrystalline silicon is obtained through highly-effective dissociation of silane and hydrogen molecules in the high-density inductively coupled plasmas. © 2009 The Royal Society of Chemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different aspects of the plasma-enhanced chemical vapor deposition of various carbon nanostructures in the ionized gas phase of high-density, low-temperature reactive plasmas of Ar+H2+CH4 gas mixtures are studied. The growth techniques, surface morphologies, densities and fluxes of major reactive species in the discharge, and effects of the transport of the plasma-grown nanoparticles through the near-substrate plasma sheath are examined. Possible growth precursors of the carbon nanostructures are also discussed. In particular, the experimental and numerical results indicate that it is likely that the aligned carbon nanotip structures are predominantly grown by the molecular and radical units, whereas the plasma-grown nanoparticles are crucial components of polymorphous carbon films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Manipulation of a single nanoparticle in the near-substrate areas of high-density plasmas of low-temperature glow discharges is studied. It is shown that the nanoparticles can be efficiently manipulated by the thermophoretic force controlled by external heating of the substrate stage. Particle deposition onto or repulsion from nanostructured carbon surfaces critically depends on the values of the neutral gas temperature gradient in the near-substrate areas, which is directly measured in situ in different heating regimes by originally developed temperature gradient probe. The measured values of the near-surface temperature gradient are used in the numerical model of nanoparticle dynamics in a variable-length presheath. Specific conditions enabling the nanoparticle to overcome the repulsive potential and deposit on the substrate during the discharge operation are investigated. The results are relevant to fabrication of various nanostructured films employing structural incorporation of the plasma-grown nanoparticles, in particular, to nanoparticle deposition in the plasma-enhanced chemical-vapor deposition of carbon nanostructures in hydrocarbon-based plasmas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results of experimental investigations on the relationship between nanoscale morphology of carbon doped hydrogenated silicon-oxide (SiOCH) low-k films and their electron spectrum of defect states are presented. The SiOCH films have been deposited using trimethylsilane (3MS) - oxygen mixture in a 13.56 MHz plasma enhanced chemical vapor deposition (PECVD) system at variable RF power densities (from 1.3 to 2.6 W/cm2) and gas pressures of 3, 4, and 5 Torr. The atomic structure of the SiOCH films is a mixture of amorphous-nanocrystalline SiO2-like and SiC-like phases. Results of the FTIR spectroscopy and atomic force microscopy suggest that the volume fraction of the SiC-like phase increases from ∼0.2 to 0.4 with RF power. The average size of the nanoscale surface morphology elements of the SiO2-like matrix can be controlled by the RF power density and source gas flow rates. Electron density of the defect states N(E) of the SiOCH films has been investigated with the DLTS technique in the energy range up to 0.6 eV from the bottom of the conduction band. Distinct N(E) peaks at 0.25 - 0.35 eV and 0.42 - 0.52 eV below the conduction band bottom have been observed. The first N(E) peak is identified as originated from E1-like centers in the SiC-like phase. The volume density of the defects can vary from 1011 - 1017 cm-3 depending on specific conditions of the PECVD process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results of numerical simulation of the equilibrium parameters of a low pressure nanopowder-generating discharge in silane for the plasma enhanced chemical vapor deposition (PECVD) of nanostructured silicon-based films are presented. It is shown that a low electron temperature and a low density of negative SiH3 - ions are favorable for the PECVD process. This opens a possibility to predict the main parameters of the reactive plasma and plasma-nucleated nanoparticles, and hence, to control the quality of silicon nanofilms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembly of carbon nanotip (CNTP) structures on Ni-based catalyst in chemically active inductively coupled plasmas of CH 4 + H 2 + Ar gas mixtures is reported. By varying the process conditions, it appears possible to control the shape, size, and density of CNTPs, content of the nanocrystalline phase in the films, as well as to achieve excellent crystallinity, graphitization, uniformity and vertical alignment of the resulting nanostructures at substrate temperatures 300-500°C and low gas pressures (below 13.2 Pa). This study provides a simple and efficient plasma-enhanced chemical vapor deposition (PECVD) technique for the fabrication of vertically aligned CNTP arrays for electron field emitters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large arrays and networks of carbon nanotubes, both single- and multi-walled, feature many superior properties which offer excellent opportunities for various modern applications ranging from nanoelectronics, supercapacitors, photovoltaic cells, energy storage and conversation devices, to gas- and biosensors, nanomechanical and biomedical devices etc. At present, arrays and networks of carbon nanotubes are mainly fabricated from the pre-fabricated separated nanotubes by solution-based techniques. However, the intrinsic structure of the nanotubes (mainly, the level of the structural defects) which are required for the best performance in the nanotube-based applications, are often damaged during the array/network fabrication by surfactants, chemicals, and sonication involved in the process. As a result, the performance of the functional devices may be significantly degraded. In contrast, directly synthesized nanotube arrays/networks can preclude the adverse effects of the solution-based process and largely preserve the excellent properties of the pristine nanotubes. Owing to its advantages of scale-up production and precise positioning of the grown nanotubes, catalytic and catalyst-free chemical vapor depositions (CVD), as well as plasma-enhanced chemical vapor deposition (PECVD) are the methods most promising for the direct synthesis of the nanotubes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulating nanoporous materials are promising platforms for soft-ionizing membranes; however, improvement in fabrication processes and the quality and high breakdown resistance of the thin insulator layers are needed for high integration and performance. Here, scalable fabrication of highly porous, thin, silicon dioxide membranes with controlled thickness is demonstrated using plasma-enhanced chemical-vapor-deposition. The fabricated membranes exhibit good insulating properties with a breakdown voltage of 1 × 107 V/cm. Our calculations suggest that the average electric field inside a nanopore of the membranes can be as high as 1 × 106 V/cm; sufficient for ionization of wide range of molecules. These metal–insulator–metal nanoporous arrays are promising for applications such soft ionizing membranes for mass spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Control and diagnostics of low-frequency (∼ 500 kHz) inductively coupled plasmas for chemical vapor deposition (CVD) of nano-composite carbon nitride-based films is reported. Relation between the discharge control parameters, plasma electron energy distribution/probability functions (EEDF/EEPF), and elemental composition in the deposited C-N based thin films is investigated. Langmuir probe technique is employed to monitor the plasma density and potential, effective electron temperature, and EEDFs/EEPFs in Ar + N2 + CH4 discharges. It is revealed that varying RF power and gas composition/pressure one can engineer the EEDFs/EEPFs to enhance the desired plasma-chemical gas-phase reactions thus controlling the film chemical structure. Auxiliary diagnostic tools for study of the RF power deposition, plasma composition, stability, and optical emission are discussed as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The plasma-assisted RF sputtering deposition of a biocompatible, functionally graded calcium phosphate bioceramic on a Ti6A14 V orthopedic alloy is reported. The chemical composition and presence of hydroxyapatite (HA), CaTiO3, and CaO mineral phases can be effectively controlled by the process parameters. At higher DC biases, the ratio [Ca]/[P] and the amount of CaO increase, whereas the HA content decreases. Optical emission spectroscopy suggests that CaO+ is the dominant species that responds to negative DC bias and controls calcium content. Biocompatibility tests in simulated body fluid confirm a positive biomimetic response evidenced by in-growth of an apatite layer after 24 h of immersion.