382 resultados para RIGID-ROD POLYAMIDES
Resumo:
INTRODUCTION Managing spinal deformities in young children is challenging, particularly early onset scoliosis (EOS). Surgical intervention is often required if EOS has been unresponsive to conservative treatment particularly with rapidly progressive curves. An emerging treatment option for EOS is fusionless scoliosis surgery. Similar to bracing, this surgical option potentially harnesses growth, motion and function of the spine along with correcting spinal deformity. Dual growing rods are one such fusionless treatment, which aims to modulate growth of the vertebrae. The aim of this study was to ascertain the extent to which semiconstrained growing rods (Medtronic, Sofamor, Danek, Memphis, TN) with a telescopic sleeve component, reduce rotational constraint on the spine compared with standard "constrained / rigid" rods and hence potentially provide a more physiological mechanical environment for the growing spine. METHODS Six 40-60kg English Large White porcine spines served as a model for the paediatric human spine. Each spine was dissected into a 7 level thoracolumbar multi-segment unit (MSU), removing all non-ligamentous soft tissues and leaving 3cm of ribs either side. Pure nondestructive axial rotation moments of ±4Nm at a constant rotation rate of 8deg.s-1 were applied to the mounted MSU spines using a biaxial Instron testing machine. Displacement of each vertebral level was captured using a 3D motion tracking system (Optotrak 3020, Northern Digital Inc, Waterloo, ON). Each spine was tested in an un-instrumented state first and then with appropriately sized semi-constrained growing rods and rigid rods in alternating sequence. The rods were secured by multi-axial pedicle screws (Medtronic CD Horizon) at levels 2 and 6 of the construct. The range of motion (ROM), neutral zone (NZ) size and stiffness (Nm.deg-1) were calculated from the Instron load-displacement data and intervertebral ROM was calculated through a MATLAB algorithm from Optotrak data. RESULTS Irrespective of the order of testing, rigid rods significantly reduced the total ROM compared with semi-constrained rods (p<0.05) with in a significantly stiffer spine for both left and right axial rotation (p<0.05). Analysing the intervertebral motion within the instrumented levels 2-6, rigid rods showed reduced ROM compared with semi-constrained growing rods and compared with un-instrumented motion segments. CONCLUSION Semi-constrained growing rods maintain similar stiffness in axial rotation to un-instrumented spines, while dual rigid rods significantly reduce axial rotation. Clinically the effect of semi-constrained growing rods as observed in this study is that they would be expected to allow growth via the telescopic rod components while maintaining the axial flexibility of the spine, which may reduce occurrence of the crankshaft phenomenon.
Resumo:
INTRODUCTION Managing spinal deformities in young children is challenging, particularly early-onset scoliosis (EOS). Any progressive spinal deformity particularly in early life presents significant health risks for the child and a challenge for the treating surgeon. Surgical intervention is often required if EOS has been unresponsive to conservative treatment particularly with rapidly progressive curves. An emerging treatment option particularly for EOS is fusionless scoliosis surgery. Similar to bracing this surgical option potentially harnesses growth, motion and function of the spine along with correcting spinal deformity. Dual growing rods is one such fusionless treatment, which aims to modulate growth of the vertebrae. The aim of this study was to ascertain the extent to which semi-constrained growing rods (Medtronic, Memphis, TN) with a telescopic sleeve component, reduce rotational constraint on the spine compared with standard rigid rods and hence potentially provide a more physiological mechanical environment for the growing spine. METHODS Six 40-60kg English Large White porcine spines served as a model for the paediatric human spine. Each spine was dissected into 7 level thoracolumbar multi-segment unit (MSU) spines, removing all non-ligamentous soft tissues. Appropriately sized semi-constrained growing rods and rigid rods were secured by multi-axial screws (Medtronic) prior to testing in alternating sequences for each spine. Pure nondestructive moments of +/4Nm at a constant rotation rate of 8deg/s was applied to the mounted MSU spines. Displacement of each level was captured using an Optotrak (Northern Digital Inc, Waterloo, ON). The range of motion (ROM), neutral zone (NZ) size and stiffness (Nm/deg) were calculated from the Instron load-displacement data and intervertebral ROM was calculated through a MATLAB algorithm from Optotrak data. RESULTS Irrespective of sequence order rigid rods significantly reduced the total ROM (deg) than compared to semi-constrained rods (p<0.05) and resulted in a significantly stiffer (Nm/deg) spine for both left and right axial rotation testing (p<0.05). Analysing the intervertebral motion within the instrumented levels, rigid rods showed reduced ROM (Deg) than compared to semi-constrained growing rods and the un-instrumented (UN-IN) test sequences. CONCLUSION The semi-constrained growing rods maintained rotation similar to UN-IN spines while the rigid rods showed significantly reduced axial rotation across all instrumented levels. Clinically the effect of semi-constrained growing rods evaluated in this study is that they will allow growth via the telescopic rod components while maintaining the axial rotation ability of the spine, which may also reduce the occurrence of the crankshaft phenomenon.
Resumo:
We studied the effect of rod–cone interactions on mesopic visual reaction time (RT). Rod and cone photoreceptor excitations were independently controlled using a four-primary photostimulator. It was observed that (1) lateral rod–cone interactions increase the cone-mediated RTs; (2) the rod–cone interactions are strongest when rod sensitivity is maximal in a dark surround, but weaker with increased rod activity in a light surround; and (3) the presence of a dark surround nonselectively increased the mean and variability of chromatic (+L-M, S-cone) and luminance (L+M+S) RTs independent of the level of rod activity. The results demonstrate that lateral rod–cone interactions must be considered when deriving mesopic luminous efficiency using RT.
Resumo:
Purpose: To determine the relative contributions of rods, cones and melanopsin to pupil responses in humans using temporal sinusoidal stimulation for light levels spanning the low mesopic to photopic range. Methods: A four-primary Ganzfeld photostimulator controlled flicker stimulations at seven light levels (-2.7 to 2 log cd/m2) and five frequencies (0.5 to 8Hz). Pupil diameter was measured using a high-resolution eyetracker. Three kinds of sinusoidal photoreceptor modulations were generated using silent substitution: 1) rod modulation, 2) cone modulation, and 3) combined rod and cone modulation in phase (Experiment 1) or phase shifted (Experiment 2) from a fixed rod phase. The melanopsin excitation was computed for each condition. A vector sum model was used to estimate the relative contribution of rods, cones and melanopsin to the pupil response. Results: From Experiment 1, the pupil frequency response peaked at 1Hz at two mesopic light levels for the three modulation conditions. Analyzing the rod-cone phase difference for the combined modulations (Experiment 2) identified a V-shaped response amplitude with a minimum between 135° and 180°. The pupil response phases increased as cone modulation phase increased. The pupil amplitude increased with increasing light level for cone and combined in-phase rod and cone modulation, but not for the rod modulation. Conclusions: These results demonstrate that cone- and rod-pathway contributions are more predominant than melanopsin contribution to the phasic pupil response. The combined rod, cone and melanopsin inputs to the phasic state of the pupil light reflex follow linear summation.
Resumo:
Paternal postnatal depression (PND) is now recognized as a serious and prevalent problem, associated with poorer well-being and functioning of all family members. Aspects of infant temperament, sleeping and feeding perceived by parents as problematic are associated with maternal PND, however, less is known about paternal PND. This study investigated depressive symptoms (Edinburgh postnatal depression scale (EPDS)) in 219 fathers of infants aged from 1 to 24 weeks (median 7.0 weeks). Infant predictor variables were sleeping problems, feeding problems and both mother and father reported temperament. Control variables were partner’s support, other support and life events. Rigidity of parenting beliefs regarding infant regulation was also measured as a potential moderating factor. Infant feeding difficulties were associated with paternal depressive symptoms, subsuming the variance associated with both sleep problems and temperament. This relationship was not moderated by regulation beliefs. It was concluded that infant feeding is important to fathers. Fathers of infants with feeding difficulties may not be able to fulfill their idealized construction of involved fatherhood. Role incongruence may have an etiological role in paternal PND.
Resumo:
This thesis develops a novel approach to robot control that learns to account for a robot's dynamic complexities while executing various control tasks using inspiration from biological sensorimotor control and machine learning. A robot that can learn its own control system can account for complex situations and adapt to changes in control conditions to maximise its performance and reliability in the real world. This research has developed two novel learning methods, with the aim of solving issues with learning control of non-rigid robots that incorporate additional dynamic complexities. The new learning control system was evaluated on a real three degree-of-freedom elastic joint robot arm with a number of experiments: initially validating the learning method and testing its ability to generalise to new tasks, then evaluating the system during a learning control task requiring continuous online model adaptation.
Resumo:
Purpose To evaluate the influence of cone location and corneal cylinder on RGP corrected visual acuities and residual astigmatism in patients with keratoconus. Methods In this prospective study, 156 eyes from 134 patients were enrolled. Complete ophthalmologic examination including manifest refraction, Best spectacle visual acuity (BSCVA), slit-lamp biomicroscopy was performed and corneal topography analysis was done. According to the cone location on the topographic map, the patients were divided into central and paracentral cone groups. Trial RGP lenses were selected based on the flat Sim K readings and a ‘three-point touch’ fitting approach was used. Over contact lens refraction was performed, residual astigmatism (RA) was measured and best-corrected RGP visual acuities (RGPVA) were recorded. Results The mean age (±SD) was 22.1 ± 5.3 years. 76 eyes (48.6%) had central and 80 eyes (51.4%) had paracentral cone. Prior to RGP lenses fitting mean (±SD) subjective refraction spherical equivalent (SRSE), subjective refraction astigmatism (SRAST) and BSCVA (logMAR) were −5.04 ± 2.27 D, −3.51 ± 1.68 D and 0.34 ± 0.14, respectively. There were statistically significant differences between central and paracentral cone groups in mean values of SRSE, SRAST, flat meridian (Sim K1), steep meridian (Sim K2), mean K and corneal cylinder (p-values < 0.05). Comparison of BSCVA to RGPVA shows that vision has improved 0.3 logMAR by RGP lenses (p < 0.0001). Mean (±SD) RA was −0.72 ± 0.39 D. There were no statistically significant differences between RGPVAs and RAs of central and paracentral cone groups (p = 0.22) and (p = 0.42), respectively. Pearson's correlation analysis shows that there is a statistically significant relationship between corneal cylinder and BSCVA and RGPVA, However, the relationship between corneal cylinder and residual astigmatism was not significant. Conclusions Cone location has no effect on the RGP corrected visual acuities and residual astigmatism in patients with keratoconus. Corneal cylinder and Sim K values influence RGP-corrected visual acuities but do not influence residual astigmatism.
Resumo:
Recovering the motion of a non-rigid body from a set of monocular images permits the analysis of dynamic scenes in uncontrolled environments. However, the extension of factorisation algorithms for rigid structure from motion to the low-rank non-rigid case has proved challenging. This stems from the comparatively hard problem of finding a linear “corrective transform” which recovers the projection and structure matrices from an ambiguous factorisation. We elucidate that this greater difficulty is due to the need to find multiple solutions to a non-trivial problem, casting a number of previous approaches as alleviating this issue by either a) introducing constraints on the basis, making the problems nonidentical, or b) incorporating heuristics to encourage a diverse set of solutions, making the problems inter-dependent. While it has previously been recognised that finding a single solution to this problem is sufficient to estimate cameras, we show that it is possible to bootstrap this partial solution to find the complete transform in closed-form. However, we acknowledge that our method minimises an algebraic error and is thus inherently sensitive to deviation from the low-rank model. We compare our closed-form solution for non-rigid structure with known cameras to the closed-form solution of Dai et al. [1], which we find to produce only coplanar reconstructions. We therefore make the recommendation that 3D reconstruction error always be measured relative to a trivial reconstruction such as a planar one.
Resumo:
PURPOSE To quantify the influence of short-term wear of miniscleral contact lenses on the morphology of the corneo-scleral limbus, the conjunctiva, episclera and sclera. METHODS OCT images of the anterior eye were captured before, immediately following 3h of wear and then 3h after removal of a miniscleral contact lens for 10 young (27±5 years) healthy participants (neophyte rigid lens wearers). The region of analysis encompassed 1mm anterior, to 3.5mm posterior to the scleral spur. Natural diurnal variations in thickness were measured on a separate day and compensated for in subsequent analyses. RESULTS Following 3h of lens wear, statistically significant tissue thinning was observed across all quadrants, with a mean decrease in thickness of -24.1±3.6μm (p<0.001), which diminished, but did not return to baseline 3h after lens removal (-16.9±1.9μm, p<0.001). The largest tissue compression was observed in the superior quadrant (-49.9±8.5μm, p<0.01) and in the annular zone 1.5mm from the scleral spur (-48.2±5.7μm), corresponding to the approximate edge of the lens landing zone. Compression of the conjunctiva/episclera accounted for about 70% of the changes. CONCLUSIONS Optimal fitting miniscleral contact lenses worn for three hours resulted in significant tissue compression in young healthy eyes, with the greatest thinning observed superiorly, potentially due to the additional force of the eyelid, with a partial recovery of compression 3h after lens removal. Most of the morphological changes occur in the conjunctiva/episclera layers.
Resumo:
Stationary processes are random variables whose value is a signal and whose distribution is invariant to translation in the domain of the signal. They are intimately connected to convolution, and therefore to the Fourier transform, since the covariance matrix of a stationary process is a Toeplitz matrix, and Toeplitz matrices are the expression of convolution as a linear operator. This thesis utilises this connection in the study of i) efficient training algorithms for object detection and ii) trajectory-based non-rigid structure-from-motion.
Resumo:
A prospective, consecutive series of 106 patients receiving endoscopic anterior scoliosis correction. The aim was to analyse changes in radiographic parameters and rib hump in the two years following surgery. Endoscopic anterior scoliosis correction is a level sparing approach, therefore it is important to assess the amount of decompensation which occurs after surgery. All patients received a single anterior rod and vertebral body screws using a standard compression technique. Cleared disc spaces were packed with either mulched femoral head allograft or rib head/iliac crest autograft. Radiographic parameters (major, instrumented, minor Cobb, T5-T12 kyphosis) and rib hump were measured at 2,6,12 and 24 months after surgery. Paired t-tests and Wilcoxon signed ranks tests were used to assess the statistical significant of changes between adjacent time intervals.----- Results: Mean loss of major curve correction from 2 to 24 months after surgery was 4 degrees. Mean loss of rib hump correction was 1.4 degrees. Mean sagittal kyphosis increased from 27 degrees at 2 months to 30.6 degrees at 24 months. Rod fractures and screw-related complications resulted in several degrees less correction than patients without complications, but overall there was no clinically significant decompensation following complications. The study concluded that there are small changes in deformity measures after endoscopic anterior scoliosis surgery, which are statistically significant but not clinically significant.
Resumo:
Growth rods are commonly used for the treatment of scoliosis in the immature spine. Many variations have been proposed but breakage of implants is a common problem. Growth rod insertion commonly involves large exposures at initial insertion followed by multiple smaller procedures for lengthening. We present our early experiences using a percutaneous technique of insertion of a new titanium mobile bearing implant (Medtronic Inc). The implant allows some rotatory motion in the middle of the construct thus reducing construct stresses and thus possibly reducing rod breakage risk. Based on this small initial series with 12 months follow-up, percutaneous insertion of growth rods using the new implant is a safe and reliable technique although the infection rate in our sample was of note. This may be related to the titanium wear and inflammation seen in the soft tissues at time of operation and visualised on histology. No implants have required removal due to infection, and all infections were treated with debridement at next lengthening and suppressive antibiotics. Propionibacterium is one of the commonest infections seen with spinal implants and sometimes does not respond to simple antibiotic suppression. The technique allows preservation of the soft tissues until definitive fusion is needed and may lead to a decrease in hospital stay. The implant is low profile and seems to offer advantages over other systems on the market. Further follow up is needed to look at longer term outcomes with this new implant type.