336 resultados para RECOGNITION MEMORY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Speech recognition in car environments has been identified as a valuable means for reducing driver distraction when operating non-critical in-car systems. Likelihood-maximising (LIMA) frameworks optimise speech enhancement algorithms based on recognised state sequences rather than traditional signal-level criteria such as maximising signal-to-noise ratio. Previously presented LIMA frameworks require calibration utterances to generate optimised enhancement parameters which are used for all subsequent utterances. Sub-optimal recognition performance occurs in noise conditions which are significantly different from that present during the calibration session - a serious problem in rapidly changing noise environments. We propose a dialog-based design which allows regular optimisation iterations in order to track the changing noise conditions. Experiments using Mel-filterbank spectral subtraction are performed to determine the optimisation requirements for vehicular environments and show that minimal optimisation assists real-time operation with improved speech recognition accuracy. It is also shown that the proposed design is able to provide improved recognition performance over frameworks incorporating a calibration session.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For robots to operate in human environments they must be able to make their own maps because it is unrealistic to expect a user to enter a map into the robot’s memory; existing floorplans are often incorrect; and human environments tend to change. Traditionally robots have used sonar, infra-red or laser range finders to perform the mapping task. Digital cameras have become very cheap in recent years and they have opened up new possibilities as a sensor for robot perception. Any robot that must interact with humans can reasonably be expected to have a camera for tasks such as face recognition, so it makes sense to also use the camera for navigation. Cameras have advantages over other sensors such as colour information (not available with any other sensor), better immunity to noise (compared to sonar), and not being restricted to operating in a plane (like laser range finders). However, there are disadvantages too, with the principal one being the effect of perspective. This research investigated ways to use a single colour camera as a range sensor to guide an autonomous robot and allow it to build a map of its environment, a process referred to as Simultaneous Localization and Mapping (SLAM). An experimental system was built using a robot controlled via a wireless network connection. Using the on-board camera as the only sensor, the robot successfully explored and mapped indoor office environments. The quality of the resulting maps is comparable to those that have been reported in the literature for sonar or infra-red sensors. Although the maps are not as accurate as ones created with a laser range finder, the solution using a camera is significantly cheaper and is more appropriate for toys and early domestic robots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most advanced musicians are able to identify and label a heard pitch if given an opportunity to compare it to a known reference note. This is called ‘relative pitch’ (RP). A much rarer skill is the ability to identify and label a heard pitch without the need for a reference. This is colloquially referred to as ‘perfect pitch’, but appears in the academic literature as ‘absolute pitch’ (AP). AP is considered by many as a remarkable skill. As people do not seem able to develop it intentionally, it is generally regarded as innate. It is often seen as a unitary skill and that a set of identifiable criteria can distinguish those who possess the skill from those who do not. However, few studies have interrogated these notions. The present study developed and applied an interactive computer program to map pitch-labelling responses to various tonal stimuli without a known reference tone available to participants. This approach enabled the identification of the elements of sound that impacted on AP. Pitch-labelling responses of 14 participants with AP were recorded for their accuracy. Each participant’s response to the stimuli was unique. Their accuracy of labelling varied across dimensions such as timbre, range and tonality. The diversity of performance between individuals appeared to reflect their personal musical experience histories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce K-tree in an information retrieval context. It is an efficient approximation of the k-means clustering algorithm. Unlike k-means it forms a hierarchy of clusters. It has been extended to address issues with sparse representations. We compare performance and quality to CLUTO using document collections. The K-tree has a low time complexity that is suitable for large document collections. This tree structure allows for efficient disk based implementations where space requirements exceed that of main memory.