37 resultados para QoS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This presentation investigates quality of service (QoS) and resource productivity implications of transit route passenger loading and travel time. It highlights the value of occupancy load factor as a direct passenger comfort QoS measure. Automatic Fare Collection data for a premium radial bus route in Brisbane, Australia, is used to investigate time series correlation between occupancy load factor and passenger average travel time. Correlation is strong across the entire span of service in both directions. Passengers tend to be making longer, peak direction commuter trips under significantly less comfortable conditions than off-peak. The Transit Capacity and Quality of Service Manual uses segment based load factor as a measure of onboard loading comfort QoS. This paper provides additional insight into QoS by relating the two route based dimensions of occupancy load factor and passenger average travel time together in a two dimensional format, both from the passenger’s and operator’s perspectives. Future research will apply Value of Time to QoS measurement, reflecting perceived passenger comfort through crowding and average time spent onboard. This would also assist in transit service quality econometric modeling. The methodology can be readily applied in a practical setting where AFC data for fixed scheduled routes is available. The study outcomes also provide valuable research and development directions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigates whether an Australian city’s suburbs having high transit Quality of Service (QoS) are associated with higher transit ridership than those having low transit QoS •We explore how QoS measures including service frequency, service span, service coverage, and travel time ratio, along with implicit environmental predictors such as topographic grade factor influence bus ridership •We applied Multiple Linear Regression (MLR) to examine the relationship between QoS and ridership •Its outcomes enhance our understanding of transit user behavior, which is informative to urban transportation policy, planning, and provision

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates stochastic analysis of transit segment hourly passenger load factor variation for transit capacity and quality of service (QoS) analysis using Automatic Fare Collection data for a premium radial bus route in Brisbane, Australia. It compares stochastic analysis to traditional peak hour factor (PHF) analysis to gain further insight into variability of transit route segments’ passenger loading during a study hour. It demonstrates that hourly design load factor is a useful method of modeling a route segment’s capacity and QoS time history across the study weekday. This analysis method is readily adaptable to different passenger load standards by adjusting design percentile, reflecting either a more relaxed or more stringent condition. This paper also considers hourly coefficient of variation of load factor as a capacity and QoS assessment measure, in particular through its relationships with hourly average and design load factors. Smaller value reflects uniform passenger loading, which is generally indicative of well dispersed passenger boarding demands and good schedule maintenance. Conversely, higher value may be indicative of pulsed or uneven passenger boarding demands, poor schedule maintenance, and/or bus bunching. An assessment table based on hourly coefficient of variation of load factor is developed and applied to this case study. Inferences are drawn for a selection of study hours across the weekday studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study uses weekday Automatic Fare Collection (AFC) data on a premium bus line in Brisbane, Australia •Stochastic analysis is compared to peak hour factor (PHF) analysis for insight into passenger loading variability •Hourly design load factor (e.g. 88th percentile) is found to be a useful method of modeling a segment’s passenger demand time-history across a study weekday, for capacity and QoS assessment •Hourly coefficient of variation of load factor is found to be a useful QoS and operational assessment measure, particularly through its relationship with hourly average load factor, and with design load factor •An assessment table based on hourly coefficient of variation of load factor is developed from the case study

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Guaranteeing Quality of Service (QoS) with minimum computation cost is the most important objective of cloud-based MapReduce computations. Minimizing the total computation cost of cloud-based MapReduce computations is done through MapReduce placement optimization. MapReduce placement optimization approaches can be classified into two categories: homogeneous MapReduce placement optimization and heterogeneous MapReduce placement optimization. It is generally believed that heterogeneous MapReduce placement optimization is more effective than homogeneous MapReduce placement optimization in reducing the total running cost of cloud-based MapReduce computations. This paper proposes a new approach to the heterogeneous MapReduce placement optimization problem. In this new approach, the heterogeneous MapReduce placement optimization problem is transformed into a constrained combinatorial optimization problem and is solved by an innovative constructive algorithm. Experimental results show that the running cost of the cloud-based MapReduce computation platform using this new approach is 24:3%-44:0% lower than that using the most popular homogeneous MapReduce placement approach, and 2:0%-36:2% lower than that using the heterogeneous MapReduce placement approach not considering the spare resources from the existing MapReduce computations. The experimental results have also demonstrated the good scalability of this new approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates quality of service (QoS) and resource productivity implications of transit route passenger loading and travel time. It highlights the value of occupancy load factor as a direct passenger comfort QoS measure. Automatic Fare Collection data for a premium radial bus route in Brisbane, Australia, is used to investigate time series correlation between occupancy load factor and passenger average travel time. Correlation is strong across the entire span of service in both directions. Passengers tend to be making longer, peak direction commuter trips under significantly less comfortable conditions than off-peak. The Transit Capacity and Quality of Service Manual uses segment based load factor as a measure of onboard loading comfort QoS. This paper provides additional insight into QoS by relating the two route based dimensions of occupancy load factor and passenger average travel time together in a two dimensional format, both from the passenger’s and operator’s perspectives. Future research will apply Value of Time to QoS measurement, reflecting perceived passenger comfort through crowding and average time spent onboard. This would also assist in transit service quality econometric modeling. The methodology can be readily applied in a practical setting where AFC data for fixed scheduled routes is available. The study outcomes also provide valuable research and development directions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper develops theory that quantifies transit route passenger-relative load factor and distinguishes it from occupancy load factor. The ratio between these measures is defined as the load diversity coefficient, which as a single measure characterizes the diversity of passenger load factor between route segments according to the origin-destination profile. The relationship between load diversity coefficient and route coefficient of variation in occupancy load factor is quantified. Two tables are provided that enhance passenger capacity and quality of service (QoS) assessment regarding onboard passenger load. The first expresses the transit operator’s perspective of load diversity and the passengers’ perspective of load factor relative to the operator’s, across six service levels corresponding to ranges of coefficient of variation in occupancy load factor. The second interprets the relationships between passenger average travel time and each of passenger-relative load factor and occupancy load factor. The application of this methodology is illustrated using a case study of a premium radial bus route in Brisbane, Australia. The methodology can assist in benchmarking and decision making regarding route and schedule design. Future research will apply value of time to QoS measurement, reflecting perceived passenger comfort through crowding and average time spent aboard. This would also assist in transit service quality econometric modeling.