398 resultados para Pseudo-Differential Boundary Problems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gene expression is arguably the most important indicator of biological function. Thus identifying differentially expressed genes is one of the main aims of high throughout studies that use microarray and RNAseq platforms to study deregulated cellular pathways. There are many tools for analysing differentia gene expression from transciptomic datasets. The major challenge of this topic is to estimate gene expression variance due to the high amount of ‘background noise’ that is generated from biological equipment and the lack of biological replicates. Bayesian inference has been widely used in the bioinformatics field. In this work, we reveal that the prior knowledge employed in the Bayesian framework also helps to improve the accuracy of differential gene expression analysis when using a small number of replicates. We have developed a differential analysis tool that uses Bayesian estimation of the variance of gene expression for use with small numbers of biological replicates. Our method is more consistent when compared to the widely used cyber-t tool that successfully introduced the Bayesian framework to differential analysis. We also provide a user-friendly web based Graphic User Interface for biologists to use with microarray and RNAseq data. Bayesian inference can compensate for the instability of variance caused when using a small number of biological replicates by using pseudo replicates as prior knowledge. We also show that our new strategy to select pseudo replicates will improve the performance of the analysis. - See more at: http://www.eurekaselect.com/node/138761/article#sthash.VeK9xl5k.dpuf

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the motion of a diffusive population on a growing domain, 0 < x < L(t ), which is motivated by various applications in developmental biology. Individuals in the diffusing population, which could represent molecules or cells in a developmental scenario, undergo two different kinds of motion: (i) undirected movement, characterized by a diffusion coefficient, D, and (ii) directed movement, associated with the underlying domain growth. For a general class of problems with a reflecting boundary at x = 0, and an absorbing boundary at x = L(t ), we provide an exact solution to the partial differential equation describing the evolution of the population density function, C(x,t ). Using this solution, we derive an exact expression for the survival probability, S(t ), and an accurate approximation for the long-time limit, S = limt→∞ S(t ). Unlike traditional analyses on a nongrowing domain, where S ≡ 0, we show that domain growth leads to a very different situation where S can be positive. The theoretical tools developed and validated in this study allow us to distinguish between situations where the diffusive population reaches the moving boundary at x = L(t ) from other situations where the diffusive population never reaches the moving boundary at x = L(t ). Making this distinction is relevant to certain applications in developmental biology, such as the development of the enteric nervous system (ENS). All theoretical predictions are verified by implementing a discrete stochastic model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A computer code is developed for the numerical prediction of natural convection in rectangular two-dimensional cavities at high Rayleigh numbers. The governing equations are retained in the primitive variable form. The numerical method is based on finite differences and an ADI scheme. Convective terms may be approximated with either central or hybrid differencing for greater stability. A non-uniform grid distribution is possible for greater efficiency. The pressure is dealt with via a SIMPLE type algorithm and the use of a fast elliptic solver for the solenoidal velocity correction field significantly reduces computing times. Preliminary results indicate that the code is reasonably accurate, robust and fast compared with existing benchmarks and finite difference based codes, particularly at high Rayleigh numbers. Extension to three-dimensional problems and turbulence studies in similar geometries is readily possible and indicated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diffusion equations that use time fractional derivatives are attractive because they describe a wealth of problems involving non-Markovian Random walks. The time fractional diffusion equation (TFDE) is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α ∈ (0, 1). Developing numerical methods for solving fractional partial differential equations is a new research field and the theoretical analysis of the numerical methods associated with them is not fully developed. In this paper an explicit conservative difference approximation (ECDA) for TFDE is proposed. We give a detailed analysis for this ECDA and generate discrete models of random walk suitable for simulating random variables whose spatial probability density evolves in time according to this fractional diffusion equation. The stability and convergence of the ECDA for TFDE in a bounded domain are discussed. Finally, some numerical examples are presented to show the application of the present technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a singularly perturbed ordinary differential equation with non-smooth data is considered. The numerical method is generated by means of a Petrov-Galerkin finite element method with the piecewise-exponential test function and the piecewise-linear trial function. At the discontinuous point of the coefficient, a special technique is used. The method is shown to be first-order accurate and singular perturbation parameter uniform convergence. Finally, numerical results are presented, which are in agreement with theoretical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a space fractional di®usion equation (SFDE) with non- homogeneous boundary conditions on a bounded domain is considered. A new matrix transfer technique (MTT) for solving the SFDE is proposed. The method is based on a matrix representation of the fractional-in-space operator and the novelty of this approach is that a standard discretisation of the operator leads to a system of linear ODEs with the matrix raised to the same fractional power. Analytic solutions of the SFDE are derived. Finally, some numerical results are given to demonstrate that the MTT is a computationally e±cient and accurate method for solving SFDE.