79 resultados para Prosthesis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the main causes of above knee or transfemoral amputation (TFA) in the developed world is trauma to the limb. The number of people undergoing TFA due to limb trauma, particularly due to war injuries, has been increasing. Typically the trauma amputee population, including war-related amputees, are otherwise healthy, active and desire to return to employment and their usual lifestyle. Consequently there is a growing need to restore long-term mobility and limb function to this population. Traditionally transfemoral amputees are provided with an artificial or prosthetic leg that consists of a fabricated socket, knee joint mechanism and a prosthetic foot. Amputees have reported several problems related to the socket of their prosthetic limb. These include pain in the residual limb, poor socket fit, discomfort and poor mobility. Removing the socket from the prosthetic limb could eliminate or reduce these problems. A solution to this is the direct attachment of the prosthesis to the residual bone (femur) inside the residual limb. This technique has been used on a small population of transfemoral amputees since 1990. A threaded titanium implant is screwed in to the shaft of the femur and a second component connects between the implant and the prosthesis. A period of time is required to allow the implant to become fully attached to the bone, called osseointegration (OI), and be able to withstand applied load; then the prosthesis can be attached. The advantages of transfemoral osseointegration (TFOI) over conventional prosthetic sockets include better hip mobility, sitting comfort and prosthetic retention and fewer skin problems on the residual limb. However, due to the length of time required for OI to progress and to complete the rehabilitation exercises, it can take up to twelve months after implant insertion for an amputee to be able to load bear and to walk unaided. The long rehabilitation time is a significant disadvantage of TFOI and may be impeding the wider adoption of the technique. There is a need for a non-invasive method of assessing the degree of osseointegration between the bone and the implant. If such a method was capable of determining the progression of TFOI and assessing when the implant was able to withstand physiological load it could reduce the overall rehabilitation time. Vibration analysis has been suggested as a potential technique: it is a non destructive method of assessing the dynamic properties of a structure. Changes in the physical properties of a structure can be identified from changes in its dynamic properties. Consequently vibration analysis, both experimental and computational, has been used to assess bone fracture healing, prosthetic hip loosening and dental implant OI with varying degrees of success. More recently experimental vibration analysis has been used in TFOI. However further work is needed to assess the potential of the technique and fully characterise the femur-implant system. The overall aim of this study was to develop physical and computational models of the TFOI femur-implant system and use these models to investigate the feasibility of vibration analysis to detect the process of OI. Femur-implant physical models were developed and manufactured using synthetic materials to represent four key stages of OI development (identified from a physiological model), simulated using different interface conditions between the implant and femur. Experimental vibration analysis (modal analysis) was then conducted using the physical models. The femur-implant models, representing stage one to stage four of OI development, were excited and the modal parameters obtained over the range 0-5kHz. The results indicated the technique had limited capability in distinguishing between different interface conditions. The fundamental bending mode did not alter with interfacial changes. However higher modes were able to track chronological changes in interface condition by the change in natural frequency, although no one modal parameter could uniquely distinguish between each interface condition. The importance of the model boundary condition (how the model is constrained) was the key finding; variations in the boundary condition altered the modal parameters obtained. Therefore the boundary conditions need to be held constant between tests in order for the detected modal parameter changes to be attributed to interface condition changes. A three dimensional Finite Element (FE) model of the femur-implant model was then developed and used to explore the sensitivity of the modal parameters to more subtle interfacial and boundary condition changes. The FE model was created using the synthetic femur geometry and an approximation of the implant geometry. The natural frequencies of the FE model were found to match the experimental frequencies within 20% and the FE and experimental mode shapes were similar. Therefore the FE model was shown to successfully capture the dynamic response of the physical system. As was found with the experimental modal analysis, the fundamental bending mode of the FE model did not alter due to changes in interface elastic modulus. Axial and torsional modes were identified by the FE model that were not detected experimentally; the torsional mode exhibited the largest frequency change due to interfacial changes (103% between the lower and upper limits of the interface modulus range). Therefore the FE model provided additional information on the dynamic response of the system and was complementary to the experimental model. The small changes in natural frequency over a large range of interface region elastic moduli indicated the method may only be able to distinguish between early and late OI progression. The boundary conditions applied to the FE model influenced the modal parameters to a far greater extent than the interface condition variations. Therefore the FE model, as well as the experimental modal analysis, indicated that the boundary conditions need to be held constant between tests in order for the detected changes in modal parameters to be attributed to interface condition changes alone. The results of this study suggest that in a clinical setting it is unlikely that the in vivo boundary conditions of the amputated femur could be adequately controlled or replicated over time and consequently it is unlikely that any longitudinal change in frequency detected by the modal analysis technique could be attributed exclusively to changes at the femur-implant interface. Therefore further development of the modal analysis technique would require significant consideration of the clinical boundary conditions and investigation of modes other than the bending modes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Performance / presentation given at Freeplay 2010, Melbourne, Victoria as an invited guest for a session entitled "Beyond the controller" This performance intended to review the follies of tangible interface design for games since the appearance of games specific control peripherals in the 1980s. In this work I examine: Technology as prosthesis – designed artefacts that enable interaction in a virtual world; Technology as the dream of virtuality – mind-ware. IN each instance the controller DICTATES the form of interaction

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this preliminary study was to determine the relevance of the categorization of the load regime data to assess the functional output and usage of the prosthesis of lower limb amputees. The objectives were a) to introduce a categorization of load regime, b) to present some descriptors of each activity, and c) to report the results for a case. The load applied on the osseointegrated fixation of one transfemoral amputee was recorded using a portable kinetic system for 5 hours. The periods of directional locomotion, localized locomotion, and stationary loading occurred 44%, 34%, and 22% of recording time and each accounted for 51%, 38%, and 12% of the duration of the periods of activity, respectively. The absolute maximum force during directional locomotion, localized locomotion, and stationary loading was 19%, 15%, and 8% of the body weight on the anteroposterior axis, 20%, 19%, and 12% on the mediolateral axis, and 121%, 106%, and 99% on the long axis. A total of 2,783 gait cycles were recorded. Approximately 10% more gait cycles and 50% more of the total impulse than conventional analyses were identified. The proposed categorization and apparatus have the potential to complement conventional instruments, particularly for difficult cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Periprosthetic fractures are increasingly frequent. The fracture may be located over the shaft of the prosthesis, at its tip or below (21). The treatment of explosion fractures is difficult because the shaft blocks the application of implants, like screws, which need to penetrate the medullary cavity. The cerclage, as a simple periosteal loop, made of wire or more recently cable, does not only avoid the medullary cavity. Its centripetal mode of action is well suited for reducing and maintaining radially displaced fractures. Furthermore, the cerclage lends itself well for minimally invasive internal fixation. New insight challenges the disrepute of which the cerclage technology suffered for decades. The outcome of cerclage fixation benefits from an improved understanding of its technology, mechano-biology and periosteal blood supply. Preconceived and generally accepted opinions like "strangulation of blood supply" need to be re-examined. Recent mechanical evaluations (22) demonstrate that the wire application may be improved but cable is superior in hand- ling, maintenance of tension and strength. Beside the classical concepts of absolute and relative stability a defined stability condition needs consideration. It is typical for cerclage. Called "loose-lock stability" it specifies the situation where a loosened implant allows first unimpeded displacement changing abruptly into a locked fixation preventing further dislocation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When compared with similar joint arthroplasties, the prognosis of Total Ankle Replacement (TAR) is not satisfactory although it shows promising results post surgery. To date, most models do not provide the full anatomical functionality and biomechanical range of motion of the healthy ankle joint. This has sparked additional research and evaluation of clinical outcomes in order to enhance ankle prosthesis design. However, the limited biomechanical data that exist in literature are based upon two-dimensional, discrete and outdated techniques1 and may be inaccurate. Since accurate force estimations are crucial to prosthesis design, a paper based on a new biomechanical modeling approach, providing three dimensional forces acting on the ankle joint and the surrounding tissues was published recently, but the identified forces were suspected of being under-estimated, while muscles were . The present paper reports an attempt to improve the accuracy of the analysis by means of novel methods for kinematic processing of gait data, provided in release 4.1 of the AnyBody Modeling System (AnyBody Technology, Aalborg, Denmark) Results from the new method are shown and remaining issues are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Exeter stems vary in length from 90 to 150 mm. The shorter stems generally have lower offsets. The purpose of this study was to determine if length of stem, with fixed offset, affected rotational stability. Mechanical testing was carried out on 10 implant-cement constructs with 2 loading profiles, rising from chair and stair climbing, at different simulated implant lengths using purpose-built apparatus. This paper presents a mechanism for clinically observed rotational stability and explains the mechanical characteristics required for rotational stability in Exeter femoral stems. © 2012.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study determined the rate and indication for revision between cemented, uncemented, hybrid and resurfacing groups from NJR (6 th edition) data. Data validity was determined by interrogating for episodes of misclassification. We identified 6,034 (2.7%) misclassified episodes, containing 97 (4.3%) revisions. Kaplan-Meier revision rates at 3 years were 0.9% cemented, 1.9% for uncemented, 1.2% for hybrids and 3.0% for resurfacings (significant difference across all groups, p<0.001, with identical pattern in patients <55 years). Regression analysis indicated both prosthesis group and age significantly influenced failure (p<0.001). Revision for pain, aseptic loosening, and malalignment were highest in uncemented and resurfacing arthroplasty. Revision for dislocation was highest in uncemented hips (significant difference between groups, p<0.001). Feedback to the NJR on data misclassification has been made for future analysis. © 2012 Wichtig Editore.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Articular cartilage is a highly resilient tissue located at the ends of long bones. It has a zonal structure, which has functional significance in load-bearing. Cartilage does not spontaneously heal itself when damaged, and untreated cartilage lesions or age-related wear often lead to osteoarthritis (OA). OA is a degenerative condition that is highly prevalent, age-associated, and significantly affects patient mobility and quality of life. There is no cure for OA, and patients usually resort to replacing the biological joint with an artificial prosthesis. An alternative approach is to dynamically regenerate damaged or diseased cartilage through cartilage tissue engineering, where cells, materials, and stimuli are combined to form new cartilage. However, despite extensive research, major limitations remain that have prevented the wide-spread application of tissue-engineered cartilage. Critically, there is a dearth of information on whether autologous chondrocytes obtained from OA patients can be used to successfully generate cartilage tissues with structural hierarchy typically found in normal articular cartilage. I aim to address these limitations in this thesis by showing that chondrocyte subpopulations isolated from macroscopically normal areas of the cartilage can be used to engineer stratified cartilage tissues and that compressive loading plays an important role in zone-dependent biosynthesis of these chondrocytes. I first demonstrate that chondrocyte subpopulations from the superficial (S) and middle/deep (MD) zones of OA cartilage are responsive to compressive stimulation in vitro, and that the effect of compression on construct quality is zone-dependent. I also show that compressive stimulation can influence pericelluar matrix production, matrix metalloproteinase secretion, and cytokine expression in zonal chondrocytes in an alginate hydrogel model. Subsequently, I focus on recreating the zonal structure by forming layered constructs using the alginate-released chondrocyte (ARC) method either with or without polymeric scaffolds. Resulting zonal ARC constructs had hyaline morphology, and expressed cartilage matrix molecules such as proteoglycans and collagen type II in both scaffold-free and scaffold-based approaches. Overall, my findings demonstrate that chondrocyte subpopulations obtained from OA joints respond sensitively to compressive stimulation, and are able to form cartilaginous constructs with stratified organization similar to native cartilage using the scaffold-free and scaffold-based ARC technique. The ultimate goal in tissue engineering is to help provide improved treatment options for patients suffering from debilitating conditions such as OA. Further investigations in developing functional cartilage replacement tissues using autologous chondrocytes will bring us a step closer to improving the quality of life for millions of OA patients worldwide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose. To compare radiological records of 90 consecutive patients who underwent cemented total hip arthroplasty (THA) with or without use of the Rim Cutter to prepare the acetabulum. Methods. The acetabulum of 45 patients was prepared using the Rim Cutter, whereas the device was not used in the other 45 patients. Postoperative radiographs were evaluated using a digital templating system to measure (1) the positions of the operated hips with respect to the normal, contralateral hips (the centre of rotation of the socket, the height of the centre of rotation from the teardrop, and lateralisation of the centre of rotation from the teardrop) and (2) the uniformity and width of the cement mantle in the 3 DeLee Charnley acetabular zones, and the number of radiolucencies in these zones. Results. The study group showed improved radiological parameters and were closer to the anatomic centre of rotation both vertically (1.5 vs. 3.7 mm, p<0.001) and horizontally (1.8 vs. 4.4 mm, p<0.001) and had consistently thicker and more uniform cement mantles (p<0.001). There were 2 radiolucent lines in the control group but none in the study group. Conclusion. The Rim Cutter resulted in more accurate placement of the centre of rotation of a cemented prosthetic socket, and produced a thicker, more congruent cement mantle with fewer radiolucent lines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Lower-limb amputations are a serious adverse consequence of lifestyle related chronic conditions and a serious concern among the aging population in Australia. Lower limb amputations have severe personal, social and economic impacts on the individual, healthcare system and broader community. This study aimed to address a critical gap in the research literature by investigating the physical functioning and social characteristics of lower limb amputees at discharge from tertiary hospital inpatient rehabilitation. Method: A cohort study was implemented among patients with lower limb amputations admitted to a Geriatric Assessment and Rehabilitation Unit for rehabilitation at a tertiary hospital. Conventional descriptive statistics were used to examine patient demographic, physical functioning and social living outcomes recorded for patients admitted between 2005 and 2011. Results: A total of 423 admissions occurred during the study period, 313 (74%) were male. This sample included admissions for left (n = 189, 45%), right (n = 220, 52%) and bilateral (n = 14, 3%) lower limb amputations, with 15 (3%) patients dying whilst an inpatient. The mean (standard deviation) age was 65 (13.9) years. Amputations attributed to vascular causes accounted for 333 (78%) admissions; 65 (15%) of these had previously had an amputation. The mean (SD) length of stay in the rehabilitation unit was 56 (42) days. Prior to this admission, 123 (29%) patients were living alone, 289 (68%) were living with another and 3 (0.7%) were living in residential care. Following this amputation related admission, 89 (21%) patients did not return to their prior living situation. Of those admitted, 187 (44%) patients were discharged with a lower limb prosthesis. Conclusion: The clinical group is predominately older adults. The ratio of males to females was approximately 3:1. Over half did not return to walking and many were not able to return to their prior accommodation. However, few patients died during their admission.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There has been much discussion and controversy in the media recently regarding metal toxicity following large head metal on metal (MoM) total hip replacement (THR). Patients have been reported as having hugely elevated levels of metal ions with, at times, devastating systemic, neurolgical and/or orthopaedic sequelae. However, no direct correlation between metal ion level and severity of metallosis has yet been defined. Normative levels of metal ions in well functioning, non Cobalt-Chrome hips have also not been defined to date. The Exeter total hip replacement contains no Cobalt-Chrome (Co-Cr) as it is made entirely from stainless steel. However, small levels of these metals may be present in the modular head of the prosthesis, and their effect on metal ion levels in the well functioning patient has not been investigated. We proposed to define the “normal” levels of metal ions detected by blood test in 20 well functioning patients at a minimum 1 year post primary Exeter total hip replacement, where the patient had had only one joint replaced. Presently, accepted normal levels of blood Chromium are 10–100 nmol/L and plasma Cobalt are 0–20 nmol/L. The UK Modern Humanities Research Association (MHRA) has suggested that levels of either Cobalt or Chromium above 7 ppb (equivalent to 135 nmol/L for Chromium and 120 nmol/L for Cobalt) may be significant. Below this level it is indicated that significant soft tissue reaction and tissue damage is less likely and the risk of implant failure is reduced. Hips were a mixture of cemented and hybrid procedures performed by two experienced orthopaedic consultants. Seventy percent were female, with a mixture of head sizes used. In our cohort, there were no cases where the blood Chromium levels were above the normal range, and in more than 70% of cases, levels were below recordable levels. There were also no cases of elevated plasma Cobalt levels, and in 35% of cases, levels were negligible. We conclude that the implantation with an Exeter total hip replacement does not lead to elevation of blood metal ion levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The purpose of this study was to identify retrospectively the predictors of implant survival when the flapless protocol was used in two private dental practices. Materials and Methods: The collected data were initially computer searched to identify the patients; later, a hand search of patient records was carried out to identify all flapless implants consecutively inserted over the last 10 years. The demographic information gathered on statistical predictors included age, sex, periodontal and peri-implantitis status, smoking, details of implants inserted, implant locations, placement time after extraction, use of simultaneous guided hard and soft tissue regeneration procedures, loading protocols, type of prosthesis, and treatment outcomes (implant survival and complications). Excluded were any implants that required flaps or simultaneous guided hard and soft tissue regeneration procedures, and implants narrower than 3.25 mm. Results: A total of 1,241 implants had been placed in 472 patients. Life table analysis indicated cumulative 5-year and 10-year implant survival rates of 97.9% and 96.5%, respectively. Most of the failed implants occurred in the posterior maxilla (54%) in type 4 bone (74.0%), and 55.0% of failed implants had been placed in smokers. Conclusion: Flapless dental implant surgery can yield an implant survival rate comparable to that reported in other studies using traditional flap techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Periprosthetic joint infection (PJI) after THA is a major complication with an incidence of 1-3%. We report our experiences with a technique using a custom-made articulating spacer (CUMARS) at the first of two-stage treatment for PJI. This technique uses widely available all-polyethylene acetabular components and the Exeter Universal stem, fixed using antibiotic loaded acrylic cement. Seventy-six hips were treated for PJI using this technique. Performed as the first of a two-stage procedure, good functional results were commonly seen, leading to postponing second stage indefinitely with retention of the CUMARS prosthesis in 34 patients. The CUMARS technique presents an alternative to conventional spacers, using readily available components that are well tolerated, allowing weight bearing and mobility, and achieving comparable eradication rates.