246 resultados para Project 2001-006-B : Environmental Assessment Systems for Commercial Buildings LCADesign
Resumo:
Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This Industry focused report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.
Resumo:
The building life cycle process is complex and prone to fragmentation as it moves through its various stages. The number of participants, and the diversity, specialisation and isolation both in space and time of their activities, have dramatically increased over time. The data generated within the construction industry has become increasingly overwhelming. Most currently available computer tools for the building industry have offered productivity improvement in the transmission of graphical drawings and textual specifications, without addressing more fundamental changes in building life cycle management. Facility managers and building owners are primarily concerned with highlighting areas of existing or potential maintenance problems in order to be able to improve the building performance, satisfying occupants and minimising turnover especially the operational cost of maintenance. In doing so, they collect large amounts of data that is stored in the building’s maintenance database. The work described in this paper is targeted at adding value to the design and maintenance of buildings by turning maintenance data into information and knowledge. Data mining technology presents an opportunity to increase significantly the rate at which the volumes of data generated through the maintenance process can be turned into useful information. This can be done using classification algorithms to discover patterns and correlations within a large volume of data. This paper presents how and what data mining techniques can be applied on maintenance data of buildings to identify the impediments to better performance of building assets. It demonstrates what sorts of knowledge can be found in maintenance records. The benefits to the construction industry lie in turning passive data in databases into knowledge that can improve the efficiency of the maintenance process and of future designs that incorporate that maintenance knowledge.
Resumo:
In a typical large office block, by far the largest lifetime expense is the salaries of the workers - 84% for salaries compared with : office rent (14%), total energy (1%), and maintenance (1%). The key drive for business is therefore the maximisation of the productivity of the employees as this is the largest cost. Reducing total energy use by 50% will not produce the same financial return as 1% productivity improvement? The aim of the project which led to this review of the literature was to understand as far as possible the state of knowledge internationally about how the indoor environment of buildings does influence occupants and the impact this influence may have on the total cost of ownership of buildings. Therefore one of the main focus areas for the literature has been identifying whether there is a link between productivity and health of building occupants and the indoor environment. Productivity is both easy to define - the ratio of output to input - but at the same time very hard to measure in a relatively small environment where individual contributions can influence the results, in particular social interactions. Health impacts from a building environment are also difficult to measure well, as establishing casual links between the indoor environment and a particular health issue can be very difficult. All of those issues are canvassed in the literature reported here. Humans are surprisingly adaptive to different physical environments, but the workplace should not test the limits of human adaptability. Physiological models of stress, for example, accept that the body has a finite amount of adaptive energy available to cope with stress. The importance of, and this projects' focus on, the physical setting within the integrated system of high performance workplaces, means this literature survey explores research which has been undertaken on both physical and social aspects of the built environment. The literature has been largely classified in several different ways, according to the classification scheme shown below. There is still some inconsistency in the use of keywords, which is being addressed and greater uniformity will be developed for a CD version of this literature, enabling searching using this classification scheme.
Resumo:
Most buildings constructed in Australia must comply with the Building Code of Australia (BCA). Checking for compliance against the BCA is a major task for both designers and building surveyors. This project carries out a prototype research using the EDM Model Checker and the SMC Model Checker for automated design checking against the Building Codes of Australia for use in professional practice. In this project, we develop a means of encoding design requirements and domain specific knowledge for building codes and investigate the flexibility of building models to contain design information. After assessing two implementations of EDM and SMC that check compliance against deemed-to-satisfy provision of building codes relevant to access by people with disabilities, an approach to automated code checking using a shared object-oriented database is established. This project can be applied in other potential areas – including checking a building design for non-compliance of many types of design requirements. Recommendations for future development and use in other potential areas in construction industries are discussed.
Resumo:
This was a two-stage project to inform the Australian property and construction industry generally, and to provide the Australian Building Codes Board (ABCB) with information to allow it to determine whether or not sustainability requirements are necessary in the Future Building Code of Australia (BCA21). Research objectives included: examine overseas sustainability requirements for buildings and outline the reason why it is controlled and regulated in the particular country, state, principality etc. examine studies focusing on sustainability developments in buildings in Australia and overseas identify potential issues and implications associated with sustainable building requirements provide advice on whether provisions are necessary in the BCA21 to make buildings sustainable if the study determines there is a need for sustainability requirements in the BCA21, the study was to demonstrate the need to control and regulate along with the method to control and regulate. This research was broken down into two stages. Stage 1 was a literature review of international requirements as well as current thinking and practice for sustainable building developments. Stage 2 identified issues and implications of sustainability requirements for buildings and advice on whether provisions are necessary in the BCA21. This stage included workshops in all capital cities and involved key stakeholders, such as regulators, local government and representatives from key associations. This final report brings together the work of both stages, along with a searchable internet database of references and a series of nine key recommendations.
Resumo:
AIMM stands for 'Agents for Improved Maintenance Management.' The AIMM system is a prototype tool that has developed the state of the art life cycle modelling of buildings through the linking of a 3D model with maintenance data to allow both the facility manager and the designer to gain access to building maintenance information and knowledge that is currently inaccessible. AIMM integrates data mining agents into the maintenance process to produce timely data for the facility manager on the effects of different maintenance regimes.
Resumo:
The historical challenge of environmental impact assessment (EIA) has been to predict project-based impacts accurately. Both EIA legislation and the practice of EIA have evolved over the last three decades in Canada, and the development of the discipline and science of environmental assessment has improved how we apply environmental assessment to complex projects. The practice of environmental assessment integrates the social and natural sciences and relies on an eclectic knowledge base from a wide range of sources. EIA methods and tools provide a means to structure and integrate knowledge in order to evaluate and predict environmental impacts.----- This Chapter will provide a brief overview of how impacts are identified and predicted. How do we determine what aspect of the natural and social environment will be affected when a mine is excavated? How does the practitioner determine the range of potential impacts, assess whether they are significant, and predict the consequences? There are no standard answers to these questions, but there are established methods to provide a foundation for scoping and predicting the potential impacts of a project.----- Of course, the community and publics play an important role in this process, and this will be discussed in subsequent chapters. In the first part of this chapter, we will deal with impact identification, which involves appplying scoping to critical issues and determining impact significance, baseline ecosystem evaluation techniques, and how to communicate environmental impacts. In the second part of the chapter, we discuss the prediction of impacts in relation to the complexity of the environment, ecological risk assessment, and modelling.
Resumo:
The importance of broadening community participation in environmental decision-making is widely recognized and lack of participation in this process appears to be a perennial problem. In this context, there have been calls from some academics for the more extensive use of geographic information systems (GIS) and distance learning technologies, accessible via the Internet, as a possible means to inform and empower communities. However, a number of problems exist. For instance, at present the scope for online interaction between policy-makers and citizens is currently limited. Contemporary web-based environmental information systems suffer from this lack of interactivity on the one hand and on the other hand from the apparent complexity for the lay user. This paper explores the issue of online community participation at the local level and attempts to construct a framework for a new (and potentially more effective) model of online participatory decision-making. The key components, system architecture and stages of such a model are introduced. This model, referred to as a ‘Community Based Interactive Environmental Decision Support System’, incorporates advanced information technologies, distance learning and community involvement tools which will be applied and evaluated in the field through a pilot project in Tokyo in the summer of 2002.
Resumo:
Risks and uncertainties are inevitable in engineering projects and infrastructure investments. Decisions about investment in infrastructure such as for maintenance, rehabilitation and construction works can pose risks, and may generate significant impacts on social, cultural, environmental and other related issues. This report presents the results of a literature review of current practice in identifying, quantifying and managing risks and predicting impacts as part of the planning and assessment process for infrastructure investment proposals. In assessing proposals for investment in infrastructure, it is necessary to consider social, cultural and environmental risks and impacts to the overall community, as well as financial risks to the investor. The report defines and explains the concept of risk and uncertainty, and describes the three main methodology approaches to the analysis of risk and uncertainty in investment planning for infrastructure, viz examining a range of scenarios or options, sensitivity analysis, and a statistical probability approach, listed here in order of increasing merit and complexity. Forecasts of costs, benefits and community impacts of infrastructure are recognised as central aspects of developing and assessing investment proposals. Increasingly complex modelling techniques are being used for investment evaluation. The literature review identified forecasting errors as the major cause of risk. The report contains a summary of the broad nature of decision-making tools used by governments and other organisations in Australia, New Zealand, Europe and North America, and shows their overall approach to risk assessment in assessing public infrastructure proposals. While there are established techniques to quantify financial and economic risks, quantification is far less developed for political, social and environmental risks and impacts. The report contains a summary of the broad nature of decision-making tools used by governments and other organisations in Australia, New Zealand, Europe and North America, and shows their overall approach to risk assessment in assessing public infrastructure proposals. While there are established techniques to quantify financial and economic risks, quantification is far less developed for political, social and environmental risks and impacts. For risks that cannot be readily quantified, assessment techniques commonly include classification or rating systems for likelihood and consequence. The report outlines the system used by the Australian Defence Organisation and in the Australian Standard on risk management. After each risk is identified and quantified or rated, consideration can be given to reducing the risk, and managing any remaining risk as part of the scope of the project. The literature review identified use of risk mapping techniques by a North American chemical company and by the Australian Defence Organisation. This literature review has enabled a risk assessment strategy to be developed, and will underpin an examination of the feasibility of developing a risk assessment capability using a probability approach.
Resumo:
The main objective was to compare the environmental impacts of a building undergoing refurbishment both before and after the refurbishment and to assist in the design of the refurbishment with what is learned.
Resumo:
The importance of designing sustainable buildings is gaining greater acceptance worldwide. Evidence of this is how regulators are incorporating sustainable design principles into building regulations and requirements. The aim being to increase the number of sustainable buildings and move from a traditional voluntary compliance to one that is mandatory. However, developing regulations that actually achieve these aims can be a difficult exercise. Several countries in South East Asia, such as Singapore and Malaysia, have performance based building regulations that are supplemented by prescriptive measures for achieving the desired performance. Australia too has similar building regulations and has had energy efficiency regulations within the Building Code of Australia for over a decade. This paper explores some of the difficulties and problems that Australian regulators have experienced with the performance-based method and the prescriptive or “deemed-to-comply” method and measures that have been taken to try and overcome these problems. These experiences act as a useful guide to all regulators considering the incorporation of sustainable design measures into their countries building regulations. The paper also speculates on future environmental requirements being incorporated into regulations, including the possibility of non-residential buildings being required to meet minimum energy efficiency requirements, and the possible systems that would need to be in place before such requirements were included. Finally, the paper looks at a possible way forward using direct assessment from electronic designs and introduces several software tools that are currently being developed that move towards achieving this goal. Keywords: Sustainable buildings, Performance-based, Regulations, Energy efficiency, Assessment tools.
Resumo:
Measuring social and environmental metrics of property is necessary for meaningful triple bottom line (TBL) assessments. This paper demonstrates how relevant indicators derived from environmental rating systems provide for reasonably straightforward collations of performance scores that support adjustments based on a sliding scale. It also highlights the absence of a corresponding consensus of important social metrics representing the third leg of the TBL tripod. Assessing TBL may be unavoidably imprecise, but if valuers and managers continue to ignore TBL concerns, their assessments may soon be less relevant given the emerging institutional milieu informing and reflecting business practices and society expectations.
Resumo:
Queensland Department of Main Roads, Australia, spends approximately A$ 1 billion annually for road infrastructure asset management. To effectively manage road infrastructure, firstly road agencies not only need to optimise the expenditure for data collection, but at the same time, not jeopardise the reliability in using the optimised data to predict maintenance and rehabilitation costs. Secondly, road agencies need to accurately predict the deterioration rates of infrastructures to reflect local conditions so that the budget estimates could be accurately estimated. And finally, the prediction of budgets for maintenance and rehabilitation must provide a certain degree of reliability. This paper presents the results of case studies in using the probability-based method for an integrated approach (i.e. assessing optimal costs of pavement strength data collection; calibrating deterioration prediction models that suit local condition and assessing risk-adjusted budget estimates for road maintenance and rehabilitation for assessing life-cycle budget estimates). The probability concept is opening the path to having the means to predict life-cycle maintenance and rehabilitation budget estimates that have a known probability of success (e.g. produce budget estimates for a project life-cycle cost with 5% probability of exceeding). The paper also presents a conceptual decision-making framework in the form of risk mapping in which the life-cycle budget/cost investment could be considered in conjunction with social, environmental and political issues.