400 resultados para Processing image
Resumo:
The selection of optimal camera configurations (camera locations, orientations, etc.) for multi-camera networks remains an unsolved problem. Previous approaches largely focus on proposing various objective functions to achieve different tasks. Most of them, however, do not generalize well to large scale networks. To tackle this, we propose a statistical framework of the problem as well as propose a trans-dimensional simulated annealing algorithm to effectively deal with it. We compare our approach with a state-of-the-art method based on binary integer programming (BIP) and show that our approach offers similar performance on small scale problems. However, we also demonstrate the capability of our approach in dealing with large scale problems and show that our approach produces better results than two alternative heuristics designed to deal with the scalability issue of BIP. Last, we show the versatility of our approach using a number of specific scenarios.
Resumo:
Most of the existing algorithms for approximate Bayesian computation (ABC) assume that it is feasible to simulate pseudo-data from the model at each iteration. However, the computational cost of these simulations can be prohibitive for high dimensional data. An important example is the Potts model, which is commonly used in image analysis. Images encountered in real world applications can have millions of pixels, therefore scalability is a major concern. We apply ABC with a synthetic likelihood to the hidden Potts model with additive Gaussian noise. Using a pre-processing step, we fit a binding function to model the relationship between the model parameters and the synthetic likelihood parameters. Our numerical experiments demonstrate that the precomputed binding function dramatically improves the scalability of ABC, reducing the average runtime required for model fitting from 71 hours to only 7 minutes. We also illustrate the method by estimating the smoothing parameter for remotely sensed satellite imagery. Without precomputation, Bayesian inference is impractical for datasets of that scale.
Resumo:
Texture enhancement is an important component of image processing that finds extensive application in science and engineering. The quality of medical images, quantified using the imaging texture, plays a significant role in the routine diagnosis performed by medical practitioners. Most image texture enhancement is performed using classical integral order differential mask operators. Recently, first order fractional differential operators were used to enhance images. Experimentation with these methods led to the conclusion that fractional differential operators not only maintain the low frequency contour features in the smooth areas of the image, but they also nonlinearly enhance edges and textures corresponding to high frequency image components. However, whilst these methods perform well in particular cases, they are not routinely useful across all applications. To this end, we apply the second order Riesz fractional differential operator to improve upon existing approaches of texture enhancement. Compared with the classical integral order differential mask operators and other first order fractional differential operators, we find that our new algorithms provide higher signal to noise values and superior image quality.
Resumo:
Acoustic recordings of the environment provide an effective means to monitor bird species diversity. To facilitate exploration of acoustic recordings, we describe a content-based birdcall retrieval algorithm. A query birdcall is a region of spectrogram bounded by frequency and time. Retrieval depends on a similarity measure derived from the orientation and distribution of spectral ridges. The spectral ridge detection method caters for a broad range of birdcall structures. In this paper, we extend previous work by incorporating a spectrogram scaling step in order to improve the detection of spectral ridges. Compared to an existing approach based on MFCC features, our feature representation achieves better retrieval performance for multiple bird species in noisy recordings.
Resumo:
Frog species have been declining worldwide at unprecedented rates in the past decades. There are many reasons for this decline including pollution, habitat loss, and invasive species [1]. To preserve, protect, and restore frog biodiversity, it is important to monitor and assess frog species. In this paper, a novel method using image processing techniques for analyzing Australian frog vocalisations is proposed. An FFT is applied to audio data to produce a spectrogram. Then, acoustic events are detected and isolated into corresponding segments through image processing techniques applied to the spectrogram. For each segment, spectral peak tracks are extracted with selected seeds and a region growing technique is utilised to obtain the contour of each frog vocalisation. Based on spectral peak tracks and the contour of each frog vocalisation, six feature sets are extracted. Principal component analysis reduces each feature set down to six principal components which are tested for classification performance with a k-nearest neighbor classifier. This experiment tests the proposed method of classification on fourteen frog species which are geographically well distributed throughout Queensland, Australia. The experimental results show that the best average classification accuracy for the fourteen frog species can be up to 87%.
Resumo:
Frogs have received increasing attention due to their effectiveness for indicating the environment change. Therefore, it is important to monitor and assess frogs. With the development of sensor techniques, large volumes of audio data (including frog calls) have been collected and need to be analysed. After transforming the audio data into its spectrogram representation using short-time Fourier transform, the visual inspection of this representation motivates us to use image processing techniques for analysing audio data. Applying acoustic event detection (AED) method to spectrograms, acoustic events are firstly detected from which ridges are extracted. Three feature sets, Mel-frequency cepstral coefficients (MFCCs), AED feature set and ridge feature set, are then used for frog call classification with a support vector machine classifier. Fifteen frog species widely spread in Queensland, Australia, are selected to evaluate the proposed method. The experimental results show that ridge feature set can achieve an average classification accuracy of 74.73% which outperforms the MFCCs (38.99%) and AED feature set (67.78%).
Resumo:
It has been proposed that body image disturbance is a form of cognitive bias wherein schemas for self-relevant information guide the selective processing of appearancerelated information in the environment. This threatening information receives disproportionately more attention and memory, as measured by an Emotional Stroop and incidental recall task. The aim of this thesis was to expand the literature on cognitive processing biases in non-clinical males and females by incorporating a number of significant methodological refinements. To achieve this aim, three phases of research were conducted. The initial two phases of research provided preliminary data to inform the development of the main study. Phase One was a qualitative exploration of body image concerns amongst males and females recruited through the general community and from a university. Seventeen participants (eight male; nine female) provided information on their body image and what factors they saw as positively and negatively impacting on their self evaluations. The importance of self esteem, mood, health and fitness, and recognition of the social ideal were identified as key themes. These themes were incorporated as psycho-social measures and Stroop word stimuli in subsequent phases of the research. Phase Two involved the selection and testing of stimuli to be used in the Emotional Stroop task. Six experimental categories of words were developed that reflected a broad range of health and body image concerns for males and females. These categories were high and low calorie food words, positive and negative appearance words, negative emotion words, and physical activity words. Phase Three addressed the central aim of the project by examining cognitive biases for body image information in empirically defined sub-groups. A National sample of males (N = 55) and females (N = 144), recruited from the general community and universities, completed an Emotional Stroop task, incidental memory test, and a collection of psycho-social questionnaires. Sub-groups of body image disturbance were sought using a cluster analysis, which identified three sub-groups in males (Normal, Dissatisfied, and Athletic) and four sub-groups in females (Normal, Health Conscious, Dissatisfied, and Symptomatic). No differences were noted between the groups in selective attention, although time taken to colour name the words was associated with some of the psycho-social variables. Memory biases found across the whole sample for negative emotion, low calorie food, and negative appearance words were interpreted as reflecting the current focus on health and stigma against being unattractive. Collectively these results have expanded our understanding of processing biases in the general community by demonstrating that the processing biases are found within non-clinical samples and that not all processing biases are associated with negative functionality
Resumo:
Summary Generalized Procrustes analysis and thin plate splines were employed to create an average 3D shape template of the proximal femur that was warped to the size and shape of a single 2D radiographic image of a subject. Mean absolute depth errors are comparable with previous approaches utilising multiple 2D input projections. Introduction Several approaches have been adopted to derive volumetric density (g cm-3) from a conventional 2D representation of areal bone mineral density (BMD, g cm-2). Such approaches have generally aimed at deriving an average depth across the areal projection rather than creating a formal 3D shape of the bone. Methods Generalized Procrustes analysis and thin plate splines were employed to create an average 3D shape template of the proximal femur that was subsequently warped to suit the size and shape of a single 2D radiographic image of a subject. CT scans of excised human femora, 18 and 24 scanned at pixel resolutions of 1.08 mm and 0.674 mm, respectively, were equally split into training (created 3D shape template) and test cohorts. Results The mean absolute depth errors of 3.4 mm and 1.73 mm, respectively, for the two CT pixel sizes are comparable with previous approaches based upon multiple 2D input projections. Conclusions This technique has the potential to derive volumetric density from BMD and to facilitate 3D finite element analysis for prediction of the mechanical integrity of the proximal femur. It may further be applied to other anatomical bone sites such as the distal radius and lumbar spine.
Resumo:
We describe the design and evaluation of a platform for networks of cameras in low-bandwidth, low-power sensor networks. In our work to date we have investigated two different DSP hardware/software platforms for undertaking the tasks of compression and object detection and tracking. We compare the relative merits of each of the hardware and software platforms in terms of both performance and energy consumption. Finally we discuss what we believe are the ongoing research questions for image processing in WSNs.