42 resultados para Planck, G. J. (Gottlieb Jakob), 1751-1833.
Resumo:
The discovery by Watson and Crick of the structure of DNA is one of the great scientific discoveries. In the period since that discovery new areas of genetic research have opened up which hold out the hope of developing treatments or cures for many illnesses and diseases. Yet with these discoveries have also come an array of ethical and legal dilemmas about the use of genetic information and concerns about the potential for those with genetic diseases or conditions to be stigmatised and discriminated against. The discussion about the developments in genetic science has become increasingly, a debate about the use of genetic information within our society. Graeme Laurie’s book, Genetic Privacy: A Challenge to Medico-Legal Norms, guides the reader through the complexities of these debates by considering what we mean by privacy and asking whether our existing concepts are adequate to meet the challenges posed by the new genetics.
Resumo:
The putative role of the N-terminal region of rhodopsin-like 7 transmembrane biogenic amine receptors in agonist-induced signaling has not yet been clarified despite recent advances in 7 transmembrane receptor structural biology. Given the existence of N-terminal nonsynonymous polymorphisms (R6G;E42G) within the HTR2B gene in a drug-abusing population, we assessed whether these polymorphisms affect 5-hydroxytryptamine 2B (5-HT2B) receptor in vitro pharmacologic and coupling properties in transfected COS-7 cells. Modification of the 5-HT2B receptor N terminus by the R6G;E42G polymorphisms increases such agonist signaling pathways as inositol phosphate accumulation as assessed by either classic or operational models. The N-terminal R6G;E42G mutations of the 5-HT2B receptor also increase cell proliferation and slow its desensitization kinetics compared with the wild-type receptor, further supporting a role for the N terminus in transduction efficacy. Furthermore, by coexpressing a tethered wild-type 5-HT2B receptor N terminus with a 5-HT2B receptor bearing a N-terminal deletion, we were able to restore original coupling. This reversion to normal activity of a truncated 5-HT2B receptor by coexpression of the membrane-tethered wild-type 5-HT2B receptor N terminus was not observed using a membrane-tethered 5-HT2B receptor R6G;E42G N terminus. These data suggest that the N terminus exerts a negative control over basal as well as agonist-stimulated receptor activity that is lost in the R6G;E42G mutant. Our findings reveal a new and unanticipated role of the 5-HT2B receptor N terminus as a negative modulator, affecting both constitutive and agonist-stimulated activity. Moreover, our data caution against excluding the N terminus and extracellular loops in structural studies of this 7 transmembrane receptor family
Resumo:
The fractional Fokker-Planck equation is an important physical model for simulating anomalous diffusions with external forces. Because of the non-local property of the fractional derivative an interesting problem is to explore high accuracy numerical methods for fractional differential equations. In this paper, a space-time spectral method is presented for the numerical solution of the time fractional Fokker-Planck initial-boundary value problem. The proposed method employs the Jacobi polynomials for the temporal discretization and Fourier-like basis functions for the spatial discretization. Due to the diagonalizable trait of the Fourier-like basis functions, this leads to a reduced representation of the inner product in the Galerkin analysis. We prove that the time fractional Fokker-Planck equation attains the same approximation order as the time fractional diffusion equation developed in [23] by using the present method. That indicates an exponential decay may be achieved if the exact solution is sufficiently smooth. Finally, some numerical results are given to demonstrate the high order accuracy and efficiency of the new numerical scheme. The results show that the errors of the numerical solutions obtained by the space-time spectral method decay exponentially.
Resumo:
We commend Swanenburg et al. (2013) on translation, development, and clinimetric analysis of the NDI-G. However, the dual-factor structure with factor analysis and the high level of internal consistency (IC) highlighted in their discussion were not emphasized in the abstract or conclusion. These points may imply some inconsistencies with the final conclusions since determination of stable point estimates with the study's small sample are exceedingly difficult.
Resumo:
Objective Certain mutations in ANKH, which encodes a multiple-pass transmembrane protein that regulates inorganic pyrophosphate (PPi) transport, are linked to autosomal-dominant familial chondrocalcinosis. This study investigated the potential for ANKH sequence variants to promote sporadic chondrocalcinosis. Methods ANKH variants identified by genomic sequencing were screened for association with chondrocalcinosis in 128 patients with severe sporadic chondrocalcinosis or pseudogout and in ethnically matched healthy controls. The effects of specific variants on expression of common markers were evaluated by in vitro transcription/translation. The function of these variants was studied in transfected human immortalized CH-8 articular chondrocytes. Results Sporadic chondrocalcinosis was associated with a G-to-A transition in the ANKH 5′-untranslated region (5′-UTR) at 4 bp upstream of the start codon (in homozygotes of the minor allele, genotype relative risk 6.0, P = 0.0006; overall genotype association P = 0.02). This -4-bp transition, as well as 2 mutations previously linked with familial and sporadic chondrocalcinosis (+14 bp C-to-T and C-terminal GAG deletion, respectively), but not the French familial chondrocalcinosis kindred 143-bp T-to-C mutation, increased reticulocyte ANKH transcription/ANKH translation in vitro. Transfection of complementary DNA for both the wild-type ANKH and the -4-bp ANKH protein variant promoted increased extracellular PPi in CH-8 cells, but unexpectedly, these ANKH mutants had divergent effects on the expression of extracellular PPi and the chondrocyte hypertrophy marker, type X collagen. Conclusion A subset of sporadic chondrocalcinosis appears to be heritable via a -4-bp G-to-A ANKH 5′-UTR transition that up-regulates expression of ANKH and extracellular PPi in chondrocyte cells. Distinct ANKH mutations associated with heritable chondrocalcinosis may promote disease by divergent effects on extracellular PPi and chondrocyte hypertrophy, which is likely to mediate differences in the clinical phenotypes and severity of the disease.
Resumo:
In this work, we consider subordinated processes controlled by a family of subordinators which consist of a power function of a time variable and a negative power function of an α-stable random variable. The effect of parameters in the subordinators on the subordinated process is discussed. By suitable variable substitutions and the Laplace transform technique, the corresponding fractional Fokker–Planck-type equations are derived. We also compute their mean square displacements in a free force field. By choosing suitable ranges of parameters, the resulting subordinated processes may be subdiffusive, normal diffusive or superdiffusive
Resumo:
The catalytic role of germanium (Ge) was investigated to improve the electrochemical performance of tin dioxide grown on graphene (SnO(2)/G) nanocomposites as an anode material of lithium ion batteries (LIBs). Germanium dioxide (GeO(20) and SnO(2) nanoparticles (<10 nm) were uniformly anchored on the graphene sheets via a simple single-step hydrothermal method. The synthesized SnO(2)(GeO(2))0.13/G nanocomposites can deliver a capacity of 1200 mA h g(-1) at a current density of 100 mA g(-1), which is much higher than the traditional theoretical specific capacity of such nanocomposites (∼ 702 mA h g(-1)). More importantly, the SnO(2)(GeO(2))0.13/G nanocomposites exhibited an improved rate, large current capability (885 mA h g(-1) at a discharge current of 2000 mA g(-1)) and excellent long cycling stability (almost 100% retention after 600 cycles). The enhanced electrochemical performance was attributed to the catalytic effect of Ge, which enabled the reversible reaction of metals (Sn and Ge) to metals oxide (SnO(2) and GeO(2)) during the charge/discharge processes. Our demonstrated approach towards nanocomposite catalyst engineering opens new avenues for next-generation high-performance rechargeable Li-ion batteries anode materials.
Resumo:
The role of the CTLA-4 antigen in the development of autoimmune diseases is well documented, with several autoimmune disorders showing association or linkage with the CTLA-4 locus. Its role in the aetiology of rheumatoid arthritis (RA) however, remains unclear, as the functional studies of the B7-CTLA-4 pathway in mouse models of RA and genetic studies in humans have given contrasting results. We have studied the single nucleotide polymorphism at position +49 (A/G) of the CTLA-4 gene, in a cohort of 421 RA cases and 452 healthy controls from the UK. Despite the high statistical power to detect even a weak susceptibility effect, no significant association was found. We also analysed the distribution of the allele and genotype frequencies with respect to the presence of the shared epitope (a known RA susceptibility factor) and found no statistically significant differences. We conclude that, although the importance of the B7-CTLA-4 interaction in the development of RA can not be excluded, the CTLA-4 gene is unlikely to be a predisposing factor to this disease.
Resumo:
Lentiviral vectors pseudotyped with vesicular stomatitis virus glycoprotein (VSV-G) are emerging as the vectors of choice for in vitro and in vivo gene therapy studies. However, the current method for harvesting lentivectors relies upon ultracentrifugation at 50 000 g for 2 h. At this ultra-high speed, rotors currently in use generally have small volume capacity. Therefore, preparations of large volumes of high-titre vectors are time-consuming and laborious to perform. In the present study, viral vector supernatant harvests from vector-producing cells (VPCs) were pre-treated with various amounts of poly-L-lysine (PLL) and concentrated by low speed centrifugation. Optimal conditions were established when 0.005% of PLL (w/v) was added to vector supernatant harvests, followed by incubation for 30 min and centrifugation at 10 000 g for 2 h at 4 degreesC. Direct comparison with ultracentrifugation demonstrated that the new method consistently produced larger volumes (6 ml) of high-titre viral vector at 1 x 10(8) transduction unit (TU)/ml (from about 3000 ml of supernatant) in one round of concentration. Electron microscopic analysis showed that PLL/viral vector formed complexes, which probably facilitated easy precipitation at low-speed concentration (10 000 g), a speed which does not usually precipitate viral particles efficiently. Transfection of several cell lines in vitro and transduction in vivo in the liver with the lentivector/PLL complexes demonstrated efficient gene transfer without any significant signs of toxicity. These results suggest that the new method provides a convenient means for harvesting large volumes of high-titre lentivectors, facilitate gene therapy experiments in large animal or human gene therapy trials, in which large amounts of lentiviral vectors are a prerequisite.
Resumo:
Cystic fibrosis (CF) patients require pancreatic enzyme replacement therapy to correct pancreatic insufficiency. These enzymes are derived from porcine pancreas and are known to be antigenic. To determine the possible clinical consequences, a specific ELISA was developed to detect IgG antibody directed against porcine trypsin (PTAb) in the sera of CF patients. The assay was used to evaluate the occurrence of PTAb in a cross sectional study of 103 CF patients in relation to the introduction of porcine enzyme therapy, clinical status and genotype. Antibodies against porcine trypsin were detected in the sera of 63% of patients unrelated to the age of commencement or the duration of enzyme therapy. No differences were observed in the clinical status of CF patients who had developed PTAb (n = 65) and those who had no detectable PTAb (n = 38) as determined from: the current prescribed dose of porcine pancreatic enzyme capsules; Z scores for height and weight; and respiratory function tests. It is suggested that the PTAb commonly found in the sera of CF patients are of doubtful clinical significance but the prospect of PTAb contributing to immune complex disease should be examined further.
Resumo:
OBJECTIVE: To further investigate a common variant (rs9939609) in the fat mass- and obesity-associated gene (FTO), which recent genome-wide association studies have shown to be associated with body mass index (BMI) and obesity. DESIGN: We examined the effect of this FTO variant on BMI in 3353 Australian adult male and female twins. RESULTS: The minor A allele of rs9939609 was associated with an increased BMI (P=0.0007). Each additional copy of the A allele was associated with a mean BMI increase of approximately 1.04 kg/m(2) (approximately 3.71 kg). Using variance components decomposition, we estimate that this single-nucleotide polymorphism accounts for approximately 3% of the genetic variance in BMI in our sample (approximately 2% of the total variance). By comparing intrapair variances of monozygotic twins of different genotypes we were able to perform a direct test of gene by environment (G x E) interaction in both sexes and gene by parity (G x P) interaction in women, but no evidence was found for either. CONCLUSIONS: In addition to supporting earlier findings that the rs9939609 variant in the FTO gene is associated with an increased BMI, our results indicate that the associated genetic effect does not interact with environment or parity.
Resumo:
-Essential hypertensives display enhanced signal transduction through pertussis toxin-sensitive G proteins. The T allele of a C825T variant in exon 10 of the G protein beta3 subunit gene (GNB3) induces formation of a splice variant (Gbeta3-s) with enhanced activity. The T allele of GNB3 was shown recently to be associated with hypertension in unselected German patients (frequency=0.31 versus 0.25 in control). To confirm and extend this finding in a different setting, we performed an association study in Australian white hypertensives. This involved an extensively examined cohort of 110 hypertensives, each of whom were the offspring of 2 hypertensive parents, and 189 normotensives whose parents were both normotensive beyond age 50 years. Genotyping was performed by polymerase chain reaction and digestion with BseDI, which either cut (C allele) or did not cut (T allele) the 268-bp polymerase chain reaction product. T allele frequency in the hypertensive group was 0.43 compared with 0.25 in the normotensive group (chi2=22; P=0.00002; odds ratio=2.3; 95% CI=1.7 to 3.3). The T allele tracked with higher pretreatment blood pressure: diastolic=105+/-7, 109+/-16, and 128+/-28 mm Hg (mean+/-SD) for CC, CT, and TT, respectively (P=0.001 by 1-way ANOVA). Blood pressures were higher in female hypertensives with a T allele (P=0.006 for systolic and 0.0003 for diastolic by ANOVA) than they were in male hypertensives. In conclusion, the present study of a group with strong family history supports a role for a genetically determined, physiologically active splice variant of the G protein beta3 subunit gene in the causation of essential hypertension.