134 resultados para Physical-chemical treatment


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new Expiratory Droplet Investigation System (EDIS) was used to conduct the most comprehensive program of study to date, of the dilution corrected droplet size distributions produced during different respiratory activities.----- Distinct physiological processes were responsible for specific size distribution modes. The majority of particles for all activities were produced in one or more modes, with diameters below 0.8 µm. That mode occurred during all respiratory activities, including normal breathing. A second mode at 1.8 µm was produced during all activities, but at lower concentrations.----- Speech produced particles in modes near 3.5 µm and 5 µm. The modes became most pronounced during continuous vocalization, suggesting that the aerosolization of secretions lubricating the vocal chords is a major source of droplets in terms of number.----- Non-eqilibrium droplet evaporation was not detectable for particles between 0.5 and 20 μm implying that evaporation to the equilibrium droplet size occurred within 0.8 s.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The release of ultrafine particles (UFP) from laser printers and office equipment was analyzed using a particle counter (FMPS; Fast Mobility Particle Sizer) with a high time resolution, as well as the appropriate mathematical models. Measurements were carried out in a 1 m³ chamber, a 24 m³ chamber and an office. The time-dependent emission rates were calculated for these environments using a deconvolution model, after which the total amount of emitted particles was calculated. The total amounts of released particles were found to be independent of the environmental parameters and therefore, in principle, they were appropriate for the comparison of different printers. On the basis of the time-dependent emission rates, “initial burst” emitters and constant emitters could also be distinguished. In the case of an “initial burst” emitter, the comparison to other devices is generally affected by strong variations between individual measurements. When conducting exposure assessments for UFP in an office, the spatial distribution of the particles also had to be considered. In this work, the spatial distribution was predicted on a case by case basis, using CFD simulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A purified commercial double-walled carbon nanotube (DWCNT) sample was investigated by transmission electron microscopy (TEM), thermogravimetry (TG), and Raman spectroscopy. Moreover, the heat capacity of the DWCNT sample was determined by temperature-modulated differential scanning calorimetry in the range of temperature between -50 and 290 °C. The main thermo-oxidation characterized by TG occurred at 474 °C with the loss of 90 wt% of the sample. Thermo-oxidation of the sample was also investigated by high-resolution TG, which indicated that a fraction rich in carbon nanotube represents more than 80 wt% of the material. Other carbonaceous fractions rich in amorphous coating and graphitic particles were identified by the deconvolution procedure applied to the derivative of TG curve. Complementary structural data were provided by TEM and Raman studies. The information obtained allows the optimization of composites based on this nanomaterial with reliable characteristics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Partially aligned and oriented polyacrylonitrile(PAN)-based nanofibers were electrospun from PAN and SWNTs/PAN in the solution of dimethylformamide(DMF) to make the carbon nanofibers. The as-spun nanofibers were hot-stretched in an oven to enhance its orientation and crystallinity. Then it were stabilized at 250 square under a stretched stress, and carbonized at 1000 square in N-2 atmosphere by fixing the length of the stabilized nanofiber to convert them into carbon nanofibers. With this hot-stretched process and with the introduction of SWNTs, the mechanical properties will be enhanced correspondingly. The crystallinity of the stretched fibers confirmed by X-ray diffraction has also increased. For PAN nanofibers, the improved fiber alignment and crystallinity resulted in the increased mechanical properties, such as the modulus and tensile strength of the nanofibers. It was concluded that the hot-stretched nanofiber and the SWNTs/PAN nanofibers can be used as a potential precursor to produce high-performance carbon composites.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to characterise and quantify the fungal fragment propagules derived and released from several fungal species (Penicillium, Aspergillus niger and Cladosporium cladosporioides) using different generation methods and different air velocities over the colonies. Real time fungal spore fragmentation was investigated using an Ultraviolet Aerodynamic Particle Sizer (UVASP) and a Scanning Mobility Particle Sizer (SMPS). The study showed that there were significant differences (p < 0.01) in the fragmentation percentage between different air velocities for the three generation methods, namely the direct, the fan and the fungal spore source strength tester (FSSST) methods. The percentage of fragmentation also proved to be dependant on fungal species. The study found that there was no fragmentation for any of the fungal species at an air velocity ≤ 0.4 m/s for any method of generation. Fluorescent signals, as well as mathematical determination also showed that the fungal fragments were derived from spores. Correlation analysis showed that the number of released fragments measured by the UVAPS under controlled conditions can be predicted on the basis of the number of spores, for Penicillium and Aspergillus niger, but not for Cladosporium cladosporioides. The fluorescence percentage of fragment samples was found to be significantly different to that of non-fragment samples (p < 0.0001) and the fragment sample fluorescence was always less than that of the non-fragment samples. Size distribution and concentration of fungal fragment particles were investigated qualitatively and quantitatively, by both UVAPS and SMPS, and it was found that the UVAPS was more sensitive than the SMPS for measuring small sample concentrations, and the results obtained from the UVAPS and SMAS were not identical for the same samples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Field and laboratory measurements identified a complex relationship between odour emission rates provided by the US EPA dynamic emission chamber and the University of New South Wales wind tunnel. Using a range of model compounds in an aqueous odour source, we demonstrate that emission rates derived from the wind tunnel and flux chamber are a function of the solubility of the materials being emitted, the concentrations of the materials within the liquid; and the aerodynamic conditions within the device – either velocity in the wind tunnel, or flushing rate for the flux chamber. The ratio of wind tunnel to flux chamber odour emission rates (OU m-2 s) ranged from about 60:1 to 112:1. The emission rates of the model odorants varied from about 40:1 to over 600:1. These results may provide, for the first time, a basis for the development of a model allowing an odour emission rate derived from either device to be used for odour dispersion modelling.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three anaerobic ponds used to store and treat piggery wastes were fully covered with permeable materials manufactured from polypropylene geofabric, polyethylene shade cloth and supported straw. The covers were assessed in terms of efficacy in reducing odour emission rates over a 40-month period. Odour samples were collected from the surface of the covers, the surface of the exposed liquor and from the surface of an uncovered (control) pond at one of the piggeries. Relative to the emission rate of the exposed liquor at each pond, the polypropylene, shade cloth and straw covers reduced average emission rates by 76%, 69% and 66% respectively. At the piggery with an uncovered control pond, the polypropylene covers reduced average odour emission rates by 50% and 41% respectively. A plausible hypothesis, consistent with likely mechanisms for the odour reduction and the olfactometric method used to quantifying the efficacy of the covers, is offered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The measurement of submicrometre (< 1.0 m) and ultrafine particles (diameter < 0.1 m) number concentration have attracted attention since the last decade because the potential health impacts associated with exposure to these particles can be more significant than those due to exposure to larger particles. At present, ultrafine particles are not regularly monitored and they are yet to be incorporated into air quality monitoring programs. As a result, very few studies have analysed their long-term and spatial variations in ultrafine particle concentration, and none have been in Australia. To address this gap in scientific knowledge, the aim of this research was to investigate the long-term trends and seasonal variations in particle number concentrations in Brisbane, Australia. Data collected over a five-year period were analysed using weighted regression models. Monthly mean concentrations in the morning (6:00-10:00) and the afternoon (16:00-19:00) were plotted against time in months, using the monthly variance as the weights. During the five-year period, submicrometre and ultrafine particle concentrations increased in the morning by 105.7% and 81.5% respectively whereas in the afternoon there was no significant trend. The morning concentrations were associated with fresh traffic emissions and the afternoon concentrations with the background. The statistical tests applied to the seasonal models, on the other hand, indicated that there was no seasonal component. The spatial variation in size distribution in a large urban area was investigated using particle number size distribution data collected at nine different locations during different campaigns. The size distributions were represented by the modal structures and cumulative size distributions. Particle number peaked at around 30 nm, except at an isolated site dominated by diesel trucks, where the particle number peaked at around 60 nm. It was found that ultrafine particles contributed to 82%-90% of the total particle number. At the sites dominated by petrol vehicles, nanoparticles (< 50 nm) contributed 60%-70% of the total particle number, and at the site dominated by diesel trucks they contributed 50%. Although the sampling campaigns took place during different seasons and were of varying duration these variations did not have an effect on the particle size distributions. The results suggested that the distributions were rather affected by differences in traffic composition and distance to the road. To investigate the occurrence of nucleation events, that is, secondary particle formation from gaseous precursors, particle size distribution data collected over a 13 month period during 5 different campaigns were analysed. The study area was a complex urban environment influenced by anthropogenic and natural sources. The study introduced a new application of time series differencing for the identification of nucleation events. To evaluate the conditions favourable to nucleation, the meteorological conditions and gaseous concentrations prior to and during nucleation events were recorded. Gaseous concentrations did not exhibit a clear pattern of change in concentration. It was also found that nucleation was associated with sea breeze and long-range transport. The implications of this finding are that whilst vehicles are the most important source of ultrafine particles, sea breeze and aged gaseous emissions play a more important role in secondary particle formation in the study area.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis focuses on the volatile and hygroscopic properties of mixed aerosol species. In particular, the influence organic species of varying solubility have upon seed aerosols. Aerosol studies were conducted at the Paul Scherrer Institut Laboratory for Atmospheric Chemistry (PSI-LAC, Villigen, Switzerland) and at the Queensland University of Technology International Laboratory for Air Quality and Health (QUT-ILAQH, Brisbane, Australia). The primary measurement tool employed in this program was the Volatilisation and Hygroscopicity Tandem Differential Mobility Analyser (VHTDMA - Johnson et al. 2004). This system was initially developed at QUT within the ILAQH and was completely re-developed as part of this project (see Section 1.4 for a description of this process). The new VHTDMA was deployed to the PSI-LAC where an analysis of the volatile and hygroscopic properties of ammonium sulphate seeds coated with organic species formed from the photo-oxidation of á-pinene was conducted. This investigation was driven by a desire to understand the influence of atmospherically prevalent organics upon water uptake by material with cloud forming capabilities. Of particular note from this campaign were observed influences of partially soluble organic coatings upon inorganic ammonium sulphate seeds above and below their deliquescence relative humidity (DRH). Above the DRH of the seed increasing the volume fraction of the organic component was shown to reduce the water uptake of the mixed particle. Below the DRH the organic was shown to activate the water uptake of the seed. This was the first time this effect had been observed for á-pinene derived SOA. In contrast with the simulated aerosols generated at the PSI-LAC a case study of the volatile and hygroscopic properties of diesel emissions was undertaken. During this stage of the project ternary nucleation was shown, for the first time, to be one of the processes involved in formation of diesel particulate matter. Furthermore, these particles were shown to be coated with a volatile hydrophobic material which prevented the water uptake of the highly hygroscopic material below. This result was a first and indicated that previous studies into the hygroscopicity of diesel emission had erroneously reported the particles to be hydrophobic. Both of these results contradict the previously upheld Zdanovksii-Stokes-Robinson (ZSR) additive rule for water uptake by mixed species. This is an important contribution as it adds to the weight of evidence that limits the validity of this rule.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High resolution thermogravimetry has been used to evaluate the carbonaceous content in a commercial sample of single-walled carbon nanotube (SWNT). The content of SWNTs in the sample was found to be at least 77mass% which was supported by images obtained with scanning and transmission electron microscopies (SEM and TEM). Furthermore, the influence of SWNT addition on the thermal stability of graphite in mixtures of SWNT/graphite at different proportions was investigated. The graphite stability decreased with the increased of SWNT content in the overall range of composition. This behavior could be due to the close contact between these carbonaceous species as determined by SEM analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mineral xocomecatlite is a hydroxy metatellurate mineral with Te6+O4 units. Tellurates may be subdivided according to their formula into three types of tellurate minerals: type (a) (AB)m(TeO4)pZq, type (b) (AB)m(TeO6).xH2O and (c) compound tellurates in which a second anion including the tellurite anion, is involved. The mineral Xocomecatlite is an example of the first type. Raman bands for xocomecatlite at 710, 763 and 796 cm-1 and 600 and 680 cm-1 are attributed to the ν1 (TeO4)2- symmetric and ν3 antisymmetric stretching mode. Raman bands observed at 2867 and 2926 cm-1 are assigned to TeOH stretching vibrations and enable estimation of the hydrogen bond distances of 2.622 Å (2867 cm-1), 2.634 Å (2926 cm-1) involving these OH units. The hydrogen bond distances are very short implying that they are necessary for the stability of the mineral.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Magnesium minerals are important in the understanding of the concept of geosequestration. The two hydrated hydroxy magnesium carbonate minerals artinite and dypingite have been studied by Raman spectroscopy. Intense bands are observed at 1092 cm-1 for artinite and at 1120 cm-1 for dypingite attributed CO32- ν1 symmetric stretching mode. The CO32- ν3 antisymmetric stretching vibrations are extremely weak and are observed at1412 and 1465 cm-1 for artinite and at 1366, 1447 and 1524 cm-1 for dypingite. Very weak Raman bands at 790 cm-1 for artinite and 800 cm-1 for dypingite are assigned to the CO32- ν2 out-of-plane bend. The Raman band at 700 cm-1 of artinite and at 725 and 760 cm-1 of dypingite are ascribed to CO32- ν2 in-plane bending mode. The Raman spectrum of artinite in the OH stretching region is characterised by two sets of bands: (a) an intense band at 3593 cm-1 assigned to the MgOH stretching vibrations and (b) the broad profile of overlapping bands at 3030 and 3229 cm-1 attributed to water stretching vibrations. X-ray diffraction studies show the minerals are disordered. This is reflected in the difficulty of obtaining Raman spectra of reasonable quality and explains why the Raman spectra of these minerals have not been previously or sufficiently described.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

SEM observations of the aqueous suspensions of kaolinite from Birdwood (South Australia) and Georgia (USA) show noticeable differences in number of physical behaviour which has been explained by different microstructure constitution.. Birdwood kaolinite dispersion gels are observed at very low solid loadings in comparison with Georgia KGa-1 kaolinite dispersions which remain fluid at higher solids loading. To explain this behaviour, the specific particle interactions of Birdwood kaolinite, different from interaction in Georgia kaolinite have been proposed. These interactions may be brought about by the presence of nano-bubbles on clay crystal edges and may force clay particles to aggregate by bubble coalescence. This explains the predominance of stair step edge-edge like (EE) contacts in suspension of Birdwood kaolinite. Such EE linked particles build long strings that form a spacious cell structure. Hydrocarbon contamination of colloidal kaolinite particles and low aspect ratio are discussed as possible explanations of this unusual behaviour of Birdwood kaolinite. In Georgia KGa-1 kaolinite dispersions instead of EE contact between platelets displayed in Birdwood kaolinite, most particles have edge to face (EF) contacts building a cardhouse structure. Such an arrangement is much less voluminous in comparison with the Birdwood kaolinite cellular honeycomb structure observed previously in smectite aqueous suspensions. Such structural characteristics of KGa-1 kaolinite particles enable higher solid volume fractions pulps to form before significantly networked gel consistency is attained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Infrared spectroscopy has been used to study nano to micro sized gallium oxyhydroxide α-GaO(OH), prepared using a low temperature hydrothermal route. Rod-like α-GaO(OH) crystals with average length of ~2.5 μm and width of 1.5 μm were prepared when the initial molar ratio of Ga to OH was 1:3. β-Ga2O3 nano and micro-rods were prepared through the calcination of α-GaO(OH) The initial morphology of α-GaO(OH) is retained in the β-Ga2O3 nanorods. The combination of infrared and infrared emission spectroscopy complimented with dynamic thermal analysis were used to characterise the α-GaO(OH) nanotubes and the formation of β-Ga2O3 nanorods. Bands at around 2903 and 2836 cm-1 are assigned to the -OH stretching vibration of α-GaO(OH) nanorods. Infrared bands at around 952 and 1026 cm-1 are assigned to the Ga-OH deformation modes of α-GaO(OH). A significant number of bands are observed in the 620 to 725 cm-1 region and are assigned to GaO stretching vibrations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the title compound, [Al(C8H4F3O2S)3]3[Fe(C8H4F3O2S)3], the metal centre is statistically occupied by AlIII and FeIII cations in a 3:1 ratio. The metal centre is within an octahedral O6 donor set defined by three chelating substituted acetoacetonate anions. The ligands are arranged around the periphery of the molecule with a mer geometry of the S atoms.