570 resultados para Patient Controlled Analgesia (PCA)
Resumo:
Background. This paper aimed to identify condition-specific patient-reported outcome measures used in clinical trials among people with wrist osteoarthritis and summarise empirical peer-reviewed evidence supporting their reliability, validity, and responsiveness to change. Methods. A systematic review of randomised controlled trials among people with wrist osteoarthritis was undertaken. Studies reporting reliability, validity, or responsiveness were identified using a systematic reverse citation trail audit procedure. Psychometric properties of the instruments were examined against predefined criteria and summarised. Results. Thirteen clinical trials met inclusion criteria. The most common patient-reported outcome was the disabilities of the arm, shoulder, and hand questionnaire (DASH). The DASH, the Michigan Hand Outcomes Questionnaire (MHQ), the Patient Evaluation Measure (PEM), and the Patient-Reported Wrist Evaluation (PRWE) had evidence supporting their reliability, validity, and responsiveness. A post-hoc review of excluded studies revealed the AUSCAN Osteoarthritis Hand Index as another suitable instrument that had favourable reliability, validity, and responsiveness. Conclusions. The DASH, MHQ, and AUSCAN Osteoarthritis Hand Index instruments were supported by the most favourable empirical evidence for validity, reliability, and responsiveness. The PEM and PRWE also had favourable empirical evidence reported for these elements. Further psychometric testing of these instruments among people with wrist osteoarthritis is warranted.
Resumo:
Background Adolescents with intellectual disability often have poor health and healthcare. This is partly as a consequence of poor communication and recall difficulties, and the possible loss of specialised paediatric services. Methods/Design A cluster randomised trial was conducted with adolescents with intellectual disability to investigate a health intervention package to enhance interactions among adolescents with intellectual disability, their parents/carers, and general practitioners (GPs). The trial took place in Queensland, Australia, between February 2007 and September 2010. The intervention package was designed to improve communication with health professionals and families’ organisation of health information, and to increase clinical activities beneficial to improved health outcomes. It consisted of the Comprehensive Health Assessment Program (CHAP), a one-off health check, and the Ask Health Diary, designed for on-going use. Participants were drawn from Special Education Schools and Special Education Units. The education component of the intervention was delivered as part of the school curriculum. Educators were surveyed at baseline and followed-up four months later. Carers were surveyed at baseline and after 26 months. Evidence of health promotion, disease prevention and case-finding activities were extracted from GPs clinical records. Qualitative interviews of educators occurred after completion of the educational component of the intervention and with adolescents and carers after the CHAP. Discussion Adolescents with intellectual disability have difficulty obtaining many health services and often find it difficult to become empowered to improve and protect their health. The health intervention package proposed may aid them by augmenting communication, improving documentation of health encounters, and improving access to, and quality of, GP care. Recruitment strategies to consider for future studies in this population include ensuring potential participants can identify themselves with the individuals used in promotional study material, making direct contact with their families at the start of the study, and closely monitoring the implementation of the educational intervention.
Resumo:
Background and purpose: The purpose of the work presented in this paper was to determine whether patient positioning and delivery errors could be detected using electronic portal images of intensity modulated radiotherapy (IMRT). Patients and methods: We carried out a series of controlled experiments delivering an IMRT beam to a humanoid phantom using both the dynamic and multiple static field method of delivery. The beams were imaged, the images calibrated to remove the IMRT fluence variation and then compared with calibrated images of the reference beams without any delivery or position errors. The first set of experiments involved translating the position of the phantom both laterally and in a superior/inferior direction a distance of 1, 2, 5 and 10 mm. The phantom was also rotated 1 and 28. For the second set of measurements the phantom position was kept fixed and delivery errors were introduced to the beam. The delivery errors took the form of leaf position and segment intensity errors. Results: The method was able to detect shifts in the phantom position of 1 mm, leaf position errors of 2 mm, and dosimetry errors of 10% on a single segment of a 15 segment IMRT step and shoot delivery (significantly less than 1% of the total dose). Conclusions: The results of this work have shown that the method of imaging the IMRT beam and calibrating the images to remove the intensity modulations could be a useful tool in verifying both the patient position and the delivery of the beam.
Resumo:
We have taken a new method of calibrating portal images of IMRT beams and used this to measure patient set-up accuracy and delivery errors, such as leaf errors and segment intensity errors during treatment. A calibration technique was used to remove the intensity modulations from the images leaving equivalent open field images that show patient anatomy that can be used for verification of the patient position. The images of the treatment beam can also be used to verify the delivery of the beam in terms of multileaf collimator leaf position and dosimetric errors. A series of controlled experiments delivering an IMRT anterior beam to the head and neck of a humanoid phantom were undertaken. A 2mm translation in the position of the phantom could be detected. With intentional introduction of delivery errors into the beam this method allowed us to detect leaf positioning errors of 2mm and variation in monitor units of 1%. The method was then applied to the case of a patient who received IMRT treatment to the larynx and cervical nodes. The anterior IMRT beam was imaged during four fractions and the images calibrated and investigated for the characteristic signs of patient position error and delivery error that were shown in the control experiments. No significant errors were seen. The method of imaging the IMRT beam and calibrating the images to remove the intensity modulations can be a useful tool in verifying both the patient position and the delivery of the beam.
Resumo:
Background Knowledge of current trends in nurse-administered procedural sedation and analgesia (PSA) in the cardiac catheterisation laboratory (CCL) may provide important insights into how to improve safety and effectiveness of this practice. Objective To characterise current practice as well as education and competency standards regarding nurse-administered PSA in Australian and New Zealand CCLs. Design A quantitative, cross-sectional, descriptive survey design was used. Methods Data were collected using a web-based questionnaire on practice, educational standards and protocols related to nurse-administered PSA. Descriptive statistics were used to analyse data. Results A sample of 62 nurses, each from a different CCL, completed a questionnaire that focused on PSA practice. Over half of the estimated total number of CCLs in Australia and New Zealand was represented. Nurse-administered PSA was used in 94% (n = 58) of respondents CCLs. All respondents indicated that benzodiazepines, opioids or a combination of both is used for PSA (n = 58). One respondent indicated that propofol was also used. 20% (n = 12) indicated that deep sedation is purposefully induced for defibrillation threshold testing and cardioversion without a second medical practitioner present. Sedation monitoring practices vary considerably between institutions. 31% (n = 18) indicated that comprehensive education about PSA is provided. 45% (n = 26) indicated that nurses who administer PSA should undergo competency assessment. Conclusion By characterising nurse-administered PSA in Australian and New Zealand CCLs, a baseline for future studies has been established. Areas of particular importance to improve include protocols for patient monitoring and comprehensive PSA education for CCL nurses in Australia and New Zealand.
Resumo:
Aims and objectives To explore issues and challenges associated with nurse-administered procedural sedation and analgesia in the cardiac catheterisation laboratory from the perspectives of senior nurses. Background Nurses play an important part in managing sedation because the prescription is usually given verbally directly from the cardiologist who is performing the procedure and typically, an anaesthetist is not present. Design A qualitative exploratory design was employed. Methods Semi-structured interviews with 23 nurses from 16 cardiac catheterisation laboratories across four states in Australia and also New Zealand were conducted. Data analysis followed the guide developed by Braun and Clark to identify the main themes. Results Major themes emerged from analysis regarding the lack of access to anaesthetists, the limitations of sedative medications, the barriers to effective patient monitoring and the impact that the increasing complexity of procedures has on patients' sedation requirements. Conclusions The most critical issue identified in this study is that current guidelines, which are meant to apply regardless of the clinical setting, are not practical for the cardiac catheterisation laboratory due to a lack of access to anaesthetists. Furthermore, this study has demonstrated that nurses hold concerns about the legitimacy of their practice in situations when they are required to perform tasks outside of clinical practice guidelines. To address nurses' concerns, it is proposed that new guidelines could be developed, which address the unique circumstances in which sedation is used in the cardiac catheterisation laboratory. Relevance to clinical practice Nurses need to possess advanced knowledge and skills in monitoring for the adverse effects of sedation. Several challenges impact on nurses' ability to monitor patients during procedural sedation and analgesia. Preprocedural patient education about what to expect from sedation is essential.
Resumo:
Background: Side effects of the medications used for procedural sedation and analgesia in the cardiac catheterisation laboratory are known to cause impaired respiratory function. Impaired respiratory function poses considerable risk to patient safety as it can lead to inadequate oxygenation. Having knowledge about the conditions that predict impaired respiratory function prior to the procedure would enable nurses to identify at-risk patients and selectively implement intensive respiratory monitoring. This would reduce the possibility of inadequate oxygenation occurring. Aim: To identify pre-procedure risk factors for impaired respiratory function during nurse-administered procedural sedation and analgesia in the cardiac catheterisation laboratory. Design: Retrospective matched case–control. Methods: 21 cases of impaired respiratory function were identified and matched to 113 controls from a consecutive cohort of patients over 18 years of age. Conditional logistic regression was used to identify risk factors for impaired respiratory function. Results: With each additional indicator of acute illness, case patients were nearly two times more likely than their controls to experience impaired respiratory function (OR 1.78; 95% CI 1.19–2.67; p = 0.005). Indicators of acute illness included emergency admission, being transferred from a critical care unit for the procedure or requiring respiratory or haemodynamic support in the lead up to the procedure. Conclusion: Several factors that predict the likelihood of impaired respiratory function were identified. The results from this study could be used to inform prospective studies investigating the effectiveness of interventions for impaired respiratory function during nurse-administered procedural sedation and analgesia in the cardiac catheterisation laboratory.
Resumo:
Background: Australian and New Zealand College of Anaesthetists’ guidelines for procedural sedation and analgesia (PSA) are intended to apply across all clinical settings. As nurses are frequently responsible for patient care during PSA in the cardiac catheterisation laboratory (CCL), their perspectives can provide insight into the effectiveness of these guidelines within this particular setting. Methods: A cross-sectional sampling design was used to recruit nurses from urban, regional, public and private CCLs across Australia and New Zealand. Semi-structured interviews were conducted, digitally recorded and transcribed. Data were analysed using thematic analysis. Findings: Twenty-three nurses from 16 CCLs across four states in Australia and New Zealand participated. Most held senior positions (managers=14; educators=5) and CCL experience ranged from 4 to 26 years (mean 11). Participants were concerned about the legitimacy of their practice as they administered PSA outside of guideline recommendations and deemed present education and training as deficient. Participants noted also that guideline recommendations were sometimes not adhered to as it was difficult to balance the increasingly complex PSA requirements of their case-mix with limited access to anaesthetists while trying not to delay procedures. Conclusion: Findings suggest that application of current PSA guidelines may be impractical for CCL nurses and, as a consequence, they are often not followed. Participants were concerned about risks to patient safety as they felt education and training was not commensurable with practice requirements. The findings suggest existing guidelines should be reviewed or new guidelines developed which address nursing practice, education and competency standards for PSA in the CCL
Resumo:
The cardiac catheterisation laboratory (CCL) is a specialised medical radiology facility where both chronic-stable and life-threatening cardiovascular illness is evaluated and treated. Although there are many potential sources of discomfort and distress associated with procedures performed in the CCL, a general anaesthetic is not usually required. For this reason, an anaesthetist is not routinely assigned to the CCL. Instead, to manage pain, discomfort and anxiety during the procedure, nurses administer a combination of sedative and analgesic medications according to direction from the cardiologist performing the procedure. This practice is referred to as nurse-administered procedural sedation and analgesia (PSA). While anecdotal evidence suggested that nurse-administered PSA was commonly used in the CCL, it was clear from the limited information available that current nurse-led PSA administration and monitoring practices varied and that there was contention around some aspects of practice including the type of medications that were suitable to be used and the depth of sedation that could be safely induced without an anaesthetist present. The overall aim of the program of research presented in this thesis was to establish an evidence base for nurse-led sedation practices in the CCL context. A sequential mixed methods design was used over three phases. The objective of the first phase was to appraise the existing evidence for nurse-administered PSA in the CCL. Two studies were conducted. The first study was an integrative review of empirical research studies and clinical practice guidelines focused on nurse-administered PSA in the CCL as well as in other similar procedural settings. This was the first review to systematically appraise the available evidence supporting the use of nurse-administered PSA in the CCL. A major finding was that, overall, nurse-administered PSA in the CCL was generally deemed to be safe. However, it was concluded from the analysis of the studies and the guidelines that were included in the review, that the management of sedation in the CCL was impacted by a variety of contextual factors including local hospital policy, workforce constraints and cardiologists’ preferences for the type of sedation used. The second study in the first phase was conducted to identify a sedation scale that could be used to monitor level of sedation during nurse-administered PSA in the CCL. It involved a structured literature review and psychometric analysis of scale properties. However, only one scale was found that was developed specifically for the CCL, which had not undergone psychometric testing. Several weaknesses were identified in its item structure. Other sedation scales that were identified were developed for the ICU. Although these scales have demonstrated validity and reliability in the ICU, weaknesses in their item structure precluded their use in the CCL. As findings indicated that no existing sedation scale should be applied to practice in the CCL, recommendations for the development and psychometric testing of a new sedation scale were developed. The objective of the second phase of the program of research was to explore current practice. Three studies were conducted in this phase using both quantitative and qualitative research methods. The first was a qualitative explorative study of nurses’ perceptions of the issues and challenges associated with nurse-administered PSA in the CCL. Major themes emerged from analysis of the qualitative data regarding the lack of access to anaesthetists, the limitations of sedative medications, the barriers to effective patient monitoring and the impact that the increasing complexity of procedures has on patients' sedation requirements. The second study in Phase Two was a cross-sectional survey of nurse-administered PSA practice in Australian and New Zealand CCLs. This was the first study to quantify the frequency that nurse-administered PSA was used in the CCL setting and to characterise associated nursing practices. It was found that nearly all CCLs utilise nurse-administered PSA (94%). Of note, by characterising nurse-administered PSA in Australian and New Zealand CCLs, several strategies to improve practice, such as setting up protocols for patient monitoring and establishing comprehensive PSA education for CCL nurses, were identified. The third study in Phase Two was a matched case-control study of risk factors for impaired respiratory function during nurse-administered PSA in the CCL setting. Patients with acute illness were found to be nearly twice as likely to experience impaired respiratory function during nurse-administered PSA (OR=1.78; 95%CI=1.19-2.67; p=0.005). These significant findings can now be used to inform prospective studies investigating the effectiveness of interventions for impaired respiratory function during nurse-administered PSA in the CCL. The objective of the third and final phase of the program of research was to develop recommendations for practice. To achieve this objective, a synthesis of findings from the previous phases of the program of research informed a modified Delphi study, which was conducted to develop a set of clinical practice guidelines for nurse-administered PSA in the CCL. The clinical practice guidelines that were developed set current best practice standards for pre-procedural patient assessment and risk screening practices as well as the intra and post-procedural patient monitoring practices that nurses who administer PSA in the CCL should undertake in order to deliver safe, evidence-based and consistent care to the many patients who undergo procedures in this setting. In summary, the mixed methods approach that was used clearly enabled the research objectives to be comprehensively addressed in an informed sequential manner, and, as a consequence, this thesis has generated a substantial amount of new knowledge to inform and support nurse-led sedation practice in the CCL context. However, a limitation of the research to note is that the comprehensive appraisal of the evidence conducted, combined with the guideline development process, highlighted that there were numerous deficiencies in the evidence base. As such, rather than being based on high-level evidence, many of the recommendations for practice were produced by consensus. For this reason, further research is required in order to ascertain which specific practices result in the most optimal patient and health service outcomes. Therefore, along with necessary guideline implementation and evaluation projects, post-doctoral research is planned to follow up on the research gaps identified, which are planned to form part of a continuing program of research in this field.
Resumo:
Impaired respiratory function (IRF) during procedural sedation and analgesia (PSA) poses considerable risk to patient safety as it can lead to inadequate oxygenation and ventilation. Risk factors that can be screened prior to the procedure have not been identified for the cardiac catheterization laboratory (CCL).
Resumo:
I read with interest the article in Angiology that determined the role of anxiety level on radial artery spasm during transradial coronary angiography.1 As the importance of conducting more randomised controlled trials using anxiolytics to define the relation between anxiety and vasospasm was noted by the authors, I offer the following insights for investigators to consider when conducting such research. While previous research has already identified that moderate procedural sedation and opioid analgesia reduces the incidence of vasospasm,2 the identification of risk factors in the present study is hypothesis generating as to how outcomes might be even further improved. It is possible that selectively applying either even more intensive sedation and analgesia or complementary non-pharmacological stress-reducing therapies, such as music therapy or visualisation and attentive behaviour, to patients ‘at-risk’ of vasospasm (women and those with high levels of anxiety prior to the procedure) might lead to even better patient outcomes...
Resumo:
Abstract Background: Studies that compare Indigenous Australian and non-Indigenous patients who experience a cardiac event or chest pain are inconclusive about the reasons for the differences in-hospital and survival rates. The advances in diagnostic accuracy, medication and specialised workforce has contributed to a lower case fatality and lengthen survival rates however this is not evident in the Indigenous Australian population. A possible driver contributing to this disparity may be the impact of patient-clinician interface during key interactions during the health care process. Methods/Design: This study will apply an Indigenous framework to describe the interaction between Indigenous patients and clinicians during the continuum of cardiac health care, i.e. from acute admission, secondary and rehabilitative care. Adopting an Indigenous framework is more aligned with Indigenous realities, knowledge, intellects, histories and experiences. A triple layered designed focus group will be employed to discuss patient-clinician engagement. Focus groups will be arranged by geographic clusters i.e. metropolitan and a regional centre. Patient informants will be identified by Indigenous status (i.e. Indigenous and non-Indigenous) and the focus groups will be convened separately. The health care provider focus groups will be convened on an organisational basis i.e. state health providers and Aboriginal Community Controlled Health Services. Yarning will be used as a research method to facilitate discussion. Yarning is in congruence with the oral traditions that are still a reality in day-to-day Indigenous lives. Discussion: This study is nestled in a larger research program that explores the drivers to the disparity of care and health outcomes for Indigenous and non-Indigenous Australians who experience an acute cardiac admission. A focus on health status, risk factors and clinical interventions may camouflage critical issues within a patient-clinician exchange. This approach may provide a way forward to reduce the appalling health disadvantage experienced within the Indigenous Australian communities. Keywords: Patient-clinician engagement, Qualitative, Cardiovascular disease, Focus groups, Indigenous
Resumo:
Aim To develop clinical practice guidelines for nurse-administered procedural sedation and analgesia in the cardiac catheterisation laboratory. Background Numerous studies have reported that nurse-administered procedural sedation and analgesia is safe. However, the broad scope of existing guidelines for the administration and monitoring of patients who receive sedation during medical procedures without an anaesthetist presents means there is a lack of specific guidance regarding optimal nursing practices for the unique circumstances in which nurse-administered procedural sedation and analgesia is used in the cardiac catheterisation laboratory. Methods A sequential mixed methods design was utilised. Initial recommendations were produced from three studies conducted by the authors: an integrative review; a qualitative study; and a cross-sectional survey. The recommendations were revised in accordance with responses from a modified Delphi study. The first Delphi round was completed by nine senior cardiac catheterisation laboratory nurses. All but one of the draft recommendations met the pre-determined cut-off point for inclusion. There were a total of 59 responses to the second round. Consensus was reached on all recommendations. Implications for nursing The guidelines that were derived from the Delphi study offer twenty four recommendations within six domains of nursing practice: Pre-procedural assessment; Pre-procedural patient and family education; Pre-procedural patient comfort; Intra-procedural patient comfort; Intra-procedural patient assessment and monitoring; and Post-procedural patient assessment and monitoring. Conclusion These guidelines provide an important foundation towards the delivery of safe, consistent and evidence-based nursing care for the many patients who receive sedation in the cardiac catheterisation laboratory setting.
Resumo:
Background: There is currently no early predictive marker of survival for patients receiving chemotherapy for malignant pleural mesothelioma (MPM). Tumour response may be predictive for overall survival (OS), though this has not been explored. We have thus undertaken a combined-analysis of OS, from a 42 day landmark, of 526 patients receiving systemic therapy for MPM. We also validate published progression-free survival rates (PFSRs) and a progression-free survival (PFS) prognostic-index model. Methods: Analyses included nine MPM clinical trials incorporating six European Organisation for Research and Treatment of Cancer (EORTC) studies. Analysis of OS from landmark (from day 42 post-treatment) was considered regarding tumour response. PFSR analysis data included six non-EORTC MPM clinical trials. Prognostic index validation was performed on one non-EORTC data-set, with available survival data. Results: Median OS, from landmark, of patients with partial response (PR) was 12·8 months, stable disease (SD), 9·4 months and progressive disease (PD), 3·4 months. Both PR and SD were associated with longer OS from landmark compared with disease progression (both p < 0·0001). PFSRs for platinum-based combination therapies were consistent with published significant clinical activity ranges. Effective separation between PFS and OS curves provided a validation of the EORTC prognostic model, based on histology, stage and performance status. Conclusion: Response to chemotherapy is associated with significantly longer OS from landmark in patients with MPM. © 2012 Elsevier Ltd. All rights reserved.