33 resultados para Partially encased column
Resumo:
Terrain traversability estimation is a fundamental requirement to ensure the safety of autonomous planetary rovers and their ability to conduct long-term missions. This paper addresses two fundamental challenges for terrain traversability estimation techniques. First, representations of terrain data, which are typically built by the rover’s onboard exteroceptive sensors, are often incomplete due to occlusions and sensor limitations. Second, during terrain traversal, the rover-terrain interaction can cause terrain deformation, which may significantly alter the difficulty of traversal. We propose a novel approach built on Gaussian process (GP) regression to learn, and consequently to predict, the rover’s attitude and chassis configuration on unstructured terrain using terrain geometry information only. First, given incomplete terrain data, we make an initial prediction under the assumption that the terrain is rigid, using a learnt kernel function. Then, we refine this initial estimate to account for the effects of potential terrain deformation, using a near-to-far learning approach based on multitask GP regression. We present an extensive experimental validation of the proposed approach on terrain that is mostly rocky and whose geometry changes as a result of loads from rover traversals. This demonstrates the ability of the proposed approach to accurately predict the rover’s attitude and configuration in partially occluded and deformable terrain.
Resumo:
Autonomous underwater vehicles (AUVs) are becoming commonplace in the study of inshore coastal marine habitats. Combined with shipboard systems, scientists are able to make in-situ measurements of water column and benthic properties. In CSIRO, autonomous gliders are used to collect water column data, while surface vessels are used to collect bathymetry information through the use of swath mapping, bottom grabs, and towed video systems. Although these methods have provided good data coverage for coastal and deep waters beyond 50m, there has been an increasing need for autonomous in-situ sampling in waters less than 50m deep. In addition, the collection of benthic and water column data has been conducted separately, requiring extensive post-processing to combine data streams. As such, a new AUV was developed for in-situ observations of both benthic habitat and water column properties in shallow waters. This paper provides an overview of the Starbug X AUV system, its operational characteristics including vision-based navigation and oceanographic sensor integration.
Resumo:
Reverse osmosis is the dominant technology utilized for desalination of saline water produced during the extraction of coal seam gas. Alternatively, ion exchange is of interest due to potential cost advantages. However, there is limited information regarding the column performance of strong acid cation resin for removal of sodium ions from both model and actual coal seam water samples. In particular, the impact of bed depth, flow rate, and regeneration was not clear. Consequently, this study applied Bed Depth Service Time (BDST) models to reveal that increasing sodium ion concentration and flow rates diminished the time required for breakthrough to occur. The loading of sodium ions on fresh resin was calculated to be ca. 71.1 g Na/kg resin. Difficulties in regeneration of the resin using hydrochloric acid solutions were discovered, with 86% recovery of exchange sites observed. The maximum concentration of sodium ions in the regenerant brine was found to be 47,400 mg/L under the conditions employed. The volume of regenerant waste formed was 6.2% of the total volume of water treated. A coal seam water sample was found to load the resin with only 53.5 g Na/kg resin, which was consistent with not only the co-presence of more favoured ions such as calcium, magnesium, barium and strontium, but also inefficient regeneration of the resin prior to the coal seam water test.