711 resultados para PREDICTIVE PERFORMANCE
Resumo:
In this paper a novel controller for stable and precise operation of multi-rotors with heavy slung loads is introduced. First, simplified equations of motions for the multi-rotor and slung load are derived. The model is then used to design a Nonlinear Model Predictive Controller (NMPC) that can manage the highly nonlinear dynamics whilst accounting for system constraints. The controller is shown to simultaneously track specified waypoints whilst actively damping large slung load oscillations. A Linear-quadratic regulator (LQR) controller is also derived, and control performance is compared in simulation. Results show the improved performance of the Nonlinear Model Predictive Control (NMPC) controller over a larger flight envelope, including aggressive maneuvers and large slung load displacements. Computational cost remains relatively small, amenable to practical implementation. Such systems for small Unmanned Aerial Vehicles (UAVs) may provide significant benefit to several applications in agriculture, law enforcement and construction.
Resumo:
Aim Performance measures for Australian laboratories reporting cervical cytology are a set of quantifiable measures relating to the profile and accuracy of reporting. This study reviews aggregate data collected over the ten years in which participation in the performance measures has been mandatory. Methods Laboratories submit annual data on performance measures relating to the profile of reporting, including reporting rates for technically unsatisfactory specimens, high grade or possible high grade abnormalities and abnormal reports. Cytology-histology correlation data and review findings of negative smears reported from women with histological high grade disease are also collected. Suggested acceptable standards are set for each measure. This study reviews the aggregate data submitted by all laboratories for the years 1998-2008 and examines trends in reporting and the performance of laboratories against the suggested standards. Results The performance of Australian laboratories has shown continued improvement over the study period. There has been a fall in the proportion of laboratories with data outside the acceptable standard range in all performance measures. Laboratories are reporting a greater proportion of specimens as definite or possible high grade abnormality. This is partly attributable to an increase in the proportion of abnormal results classified as high grade or possible high grade abnormality. Despite this, the positive predictive value for high grade and possible high grade abnormalities has continued to rise. Conclusion Performance measures for cervical cytology have provided a valuable addition to external quality assurance procedures in Australia. They have documented continued improvements in the aggregate performance, as well as providing benchmarking data and goals for acceptable performance for individual laboratories.
Resumo:
We employed a novel cuing paradigm to assess whether dynamically versus statically presented facial expressions differentially engaged predictive visual mechanisms. Participants were presented with a cueing stimulus that was either the static depiction of a low intensity expressed emotion; or a dynamic sequence evolving from a neutral expression to the low intensity expressed emotion. Following this cue and a backwards mask, participants were presented with a probe face that displayed either the same emotion (congruent) or a different emotion (incongruent) with respect to that displayed by the cue although expressed at a high intensity. The probe face had either the same or different identity from the cued face. The participants' task was to indicate whether or not the probe face showed the same emotion as the cue. Dynamic cues and same identity cues both led to a greater tendency towards congruent responding, although these factors did not interact. Facial motion also led to faster responding when the probe face was emotionally congruent to the cue. We interpret these results as indicating that dynamic facial displays preferentially invoke predictive visual mechanisms, and suggest that motoric simulation may provide an important basis for the generation of predictions in the visual system.
Resumo:
Cool roof coatings are identified by their solar reflectance index. They have been reported to have multiple benefits, the extent of which are strongly dependent on the peculiarities of the local climate, building stock and electricity network. This paper presents measured and simulated data from residential, educational and commercial buildings involved in recent field trials in Australia. The purpose of the field trials was to evaluate the impact of such coatings on electricity demand and load and to assess their potential application to improve comfort whilst avoiding the need for air conditioners. Measured reductions in temperature, power (kW) and energy (kWh) were used to develop a predictive model that correlates ambient temperature distribution profiles, building demand reduction profiles and electricity network peak demand times. Combined with simulated data, the study indicates the types of buildings that could be targeted in Demand Management programs for the mutual benefit of electricity networks and building occupants.
Resumo:
This paper presents a novel path planning method for minimizing the energy consumption of an autonomous underwater vehicle subjected to time varying ocean disturbances and forecast model uncertainty. The algorithm determines 4-Dimensional path candidates using Nonlinear Robust Model Predictive Control (NRMPC) and solutions optimised using A*-like algorithms. Vehicle performance limits are incorporated into the algorithm with disturbances represented as spatial and temporally varying ocean currents with a bounded uncertainty in their predictions. The proposed algorithm is demonstrated through simulations using a 4-Dimensional, spatially distributed time-series predictive ocean current model. Results show the combined NRMPC and A* approach is capable of generating energy-efficient paths which are resistant to both dynamic disturbances and ocean model uncertainty.
Resumo:
This paper addresses the problem of predicting the outcome of an ongoing case of a business process based on event logs. In this setting, the outcome of a case may refer for example to the achievement of a performance objective or the fulfillment of a compliance rule upon completion of the case. Given a log consisting of traces of completed cases, given a trace of an ongoing case, and given two or more possible out- comes (e.g., a positive and a negative outcome), the paper addresses the problem of determining the most likely outcome for the case in question. Previous approaches to this problem are largely based on simple symbolic sequence classification, meaning that they extract features from traces seen as sequences of event labels, and use these features to construct a classifier for runtime prediction. In doing so, these approaches ignore the data payload associated to each event. This paper approaches the problem from a different angle by treating traces as complex symbolic sequences, that is, sequences of events each carrying a data payload. In this context, the paper outlines different feature encodings of complex symbolic sequences and compares their predictive accuracy on real-life business process event logs.
Resumo:
There is an increased interest on the use of Unmanned Aerial Vehicles (UAVs) for wildlife and feral animal monitoring around the world. This paper describes a novel system which uses a predictive dynamic application that places the UAV ahead of a user, with a low cost thermal camera, a small onboard computer that identifies heat signatures of a target animal from a predetermined altitude and transmits that target’s GPS coordinates. A map is generated and various data sets and graphs are displayed using a GUI designed for easy use. The paper describes the hardware and software architecture and the probabilistic model for downward facing camera for the detection of an animal. Behavioral dynamics of target movement for the design of a Kalman filter and Markov model based prediction algorithm are used to place the UAV ahead of the user. Geometrical concepts and Haversine formula are applied to the maximum likelihood case in order to make a prediction regarding a future state of the user, thus delivering a new way point for autonomous navigation. Results show that the system is capable of autonomously locating animals from a predetermined height and generate a map showing the location of the animals ahead of the user.
Resumo:
According to career construction theory, continuous adaptation to the work environment is crucial to achieve work and career success. In this study, we examined the relative importance of career adaptability for job performance ratings using an experimental policy-capturing design. Employees (N = 135) from different vocational backgrounds rated the overall job performance of fictitious employees in 40 scenarios based on information about their career adaptability, mental ability, conscientiousness, and job complexity. We used multilevel modeling to investigate the relative importance of each factor. Consistent with expectations, career adaptability positively predicted job performance ratings, and this effect was relatively smaller than the effects of conscientiousness and mental ability. Job complexity did not moderate the effect of career adaptability on job performance ratings, suggesting that career adaptability predicts job performance ratings in high-, medium-, and low-complexity jobs. Consistent with previous research, the effect of mental ability on job performance ratings was stronger in high- compared to low-complexity jobs. Overall, our findings provide initial evidence for the predictive validity of employees' career adaptability with regard to other people's ratings of job performance.
Resumo:
Background Children with developmental coordination disorder (DCD) face evident motor difficulties in daily functioning. Little is known, however, about their difficulties in specific activities of daily living (ADL). Objective The purposes of this study were: (1) to investigate differences between children with DCD and their peers with typical development for ADL performance, learning, and participation, and (2) to explore the predictive values of these aspects. Design. This was a cross-sectional study. Methods In both a clinical sample of children diagnosed with DCD (n=25 [21 male, 4 female], age range=5-8 years) and a group of peers with typical development (25 matched controls), the children’s parents completed the DCDDaily-Q. Differences in scores between the groups were investigated using t tests for performance and participation and Pearson chi-square analysis for learning. Multiple regression analyses were performed to explore the predictive values of performance, learning, and participation. Results Compared with their peers, children with DCD showed poor performance of ADL and less frequent participation in some ADL. Children with DCD demonstrated heterogeneous patterns of performance (poor in 10%-80% of the items) and learning (delayed in 0%-100% of the items). In the DCD group, delays in learning of ADL were a predictor for poor performance of ADL, and poor performance of ADL was a predictor for less frequent participation in ADL compared with the control group. Limitations A limited number of children with DCD were addressed in this study. Conclusions This study highlights the impact of DCD on children’s daily lives and the need for tailored intervention.
Resumo:
One of the objectives of general-purpose financial reporting is to provide information about the financial position, financial performance and cash flows of an entity that is useful to a wide range of users in making economic decisions. The current focus on potentially increased relevance of fair value accounting weighed against issues of reliability has failed to consider the potential impact on the predictive ability of accounting. Based on a sample of international (non-U.S.) banks from 24 countries during 2009-2012, we test the usefulness of fair values in improving the predictive ability of earnings. First, we find that the increasing use of fair values on balance-sheet financial instruments enhances the ability of current earnings to predict future earnings and cash flows. Second, we provide evidence that the fair value hierarchy classification choices affect the ability of earnings to predict future cash flows and future earnings. More precisely, we find that the non-discretionary fair value component (Level 1 assets) improves the predictability of current earnings whereas the discretionary fair value components (Level 2 and Level 3 assets) weaken the predictive power of earnings. Third, we find a consistent and strong association between factors reflecting country-wide institutional structures and predictive power of fair values based on discretionary measurement inputs (Level 2 and Level 3 assets and liabilities). Our study is timely and relevant. The findings have important implications for standard setters and contribute to the debate on the use of fair value accounting.