95 resultados para PLASTIC-DEFORMATION
Resumo:
The vibration characteristics of structural members are significantly influenced by the axial loads and hence axial deformation of the member. Numerous methods have been developed to quantify the axial loads in individual structural members using their natural frequencies. However, the findings of these methods cannot be applied to individual members in a structural framing system as the natural frequency is a global parameter for the entire framing system. This paper proposes an innovative method which uses the modal flexibility parameter to quantify axial deformations in load bearing elements of structural framing systems. The proposed method is illustrated through examples and results highlight that the method can be used to quantify the axial deformations of Individual elements of structural framing systems.
Resumo:
The large deformation analysis is one of major challenges in numerical modelling and simulation of metal forming. Because no mesh is used, the meshfree methods show good potential for the large deformation analysis. In this paper, a local meshfree formulation, based on the local weak-forms and the updated Lagrangian (UL) approach, is developed for the large deformation analysis. To fully employ the advantages of meshfree methods, a simple and effective adaptive technique is proposed, and this procedure is much easier than the re-meshing in FEM. Numerical examples of large deformation analysis are presented to demonstrate the effectiveness of the newly developed nonlinear meshfree approach. It has been found that the developed meshfree technique provides a superior performance to the conventional FEM in dealing with large deformation problems for metal forming.
Resumo:
Experts in injection molding often refer to previous solutions to find a mold design similar to the current mold and use previous successful molding process parameters with intuitive adjustment and modification as a start for the new molding application. This approach saves a substantial amount of time and cost in experimental based corrective actions which are required in order to reach optimum molding conditions. A Case-Based Reasoning (CBR) System can perform the same task by retrieving a similar case which is applied to the new case from the case library and uses the modification rules to adapt a solution to the new case. Therefore, a CBR System can simulate human e~pertise in injection molding process design. This research is aimed at developing an interactive Hybrid Expert System to reduce expert dependency needed on the production floor. The Hybrid Expert System (HES) is comprised of CBR, flow analysis, post-processor and trouble shooting systems. The HES can provide the first set of operating parameters in order to achieve moldability condition and producing moldings free of stress cracks and warpage. In this work C++ programming language is used to implement the expert system. The Case-Based Reasoning sub-system is constructed to derive the optimum magnitude of process parameters in the cavity. Toward this end the Flow Analysis sub-system is employed to calculate the pressure drop and temperature difference in the feed system to determine the required magnitude of parameters at the nozzle. The Post-Processor is implemented to convert the molding parameters to machine setting parameters. The parameters designed by HES are implemented using the injection molding machine. In the presence of any molding defect, a trouble shooting subsystem can determine which combination of process parameters must be changed iii during the process to deal with possible variations. Constraints in relation to the application of this HES are as follows. - flow length (L) constraint: 40 mm < L < I 00 mm, - flow thickness (Th) constraint: -flow type: - material types: I mm < Th < 4 mm, unidirectional flow, High Impact Polystyrene (HIPS) and Acrylic. In order to test the HES, experiments were conducted and satisfactory results were obtained.
Resumo:
To accurately and effectively simulate large deformation is one of the major challenges in numerical modeling of metal forming. In this paper, an adaptive local meshless formulation based on the meshless shape functions and the local weak-form is developed for the large deformation analysis. Total Lagrangian (TL) and the Updated Lagrangian (UL) approaches are used and thoroughly compared each other in computational efficiency and accuracy. It has been found that the developed meshless technique provides a superior performance to the conventional FEM in dealing with large deformation problems for metal forming. In addition, the TL has better computational efficiency than the UL. However, the adaptive analysis is much more efficient using the UL approach than using in the TL approach.
Resumo:
This paper presents a multiscale study using the coupled Meshless technique/Molecular Dynamics (M2) for exploring the deformation mechanism of mono-crystalline metal (focus on copper) under uniaxial tension. In M2, an advanced transition algorithm using transition particles is employed to ensure the compatibility of both displacements and their gradients, and an effective local quasi-continuum approach is also applied to obtain the equivalent continuum strain energy density based on the atomistic poentials and Cauchy-Born rule. The key parameters used in M2 are firstly investigated using a benchmark problem. Then M2 is applied to the multiscale simulation for a mono-crystalline copper bar. It has found that the mono-crystalline copper has very good elongation property, and the ultimate strength and Young's modulus are much higher than those obtained in macro-scale.
Resumo:
We show that when a soft polymer like Poly(3-hexyl-thiophene) wraps multiwall nanotubes by coiling around the main axis, a localized deformation of the nanotube structure is observed. High resolution transmission electron microscopy shows that radial compressions of about 4% can take place, and could possibly lead to larger interlayer distance between the nanotube inner walls and reduce the innermost nanotube radius. The mechanical stress due to the polymer presence was confirmed by Raman spectroscopic observation of a gradual upshift of the carbon nanotube G-band when the polymer content in the composites was progressively increased. Vibrational spectroscopy also indicates that charge transfer from the polymer to the nanotubes is responsible for a peak frequency relative downshift for high P3HT-content samples. Continuously acquired transmission electron microscopy images at rising temperature show the MWCNT elastic compression and relaxation due to polymer rearrangement on the nanotube surface.
Elasto-plastic stress analysis of an insulated rail joint (IRJ) with a loading below shakedown limit
Resumo:
A finite element numerical simulation is carried out to examine stress distributions on railhead in the vicinity of the endpost of a insulated rail joint. The contact patch and pressure distribution are considered using modified Hertzian formulation. A combined elasto-plastic material modelling available in Abaqus is employed in the simulation. A dynamic load factor of 1.21 is considered in modelling for the wheel load based on a previous study as part of this on going research. Shakedown theorem is employed in this study. A peak pressure load which is above the shakedown limit is determined as input load. As a result, a progressive damage in the railhead has been captured as depicted in the equivalent plastic strain plot.
Resumo:
Column elements at a certain level in building are subjected to loads from different tributary areas. Consequently, differential axial deformation among these elements occurs. Adverse effects of differential axial deformation increase with building height and geometric complexity. Vibrating wire, electronic strain and external mechanical strain gauges are used to measure the axial deformations to take adequate provisions to mitigate the adverse effects. These gauges require deploying in or on the elements during their construction in order to acquire necessary measurements continuously. The use of these gauges is therefore inconvenient and uneconomical. This highlights the need for a method to quantify the axial deformation using ambient measurements. This paper proposes a comprehensive vibration based method. The unique capabilities of the proposed method present through an illustrative example.
Resumo:
Plate elements are used in many engineering applications. In-plane loads and deformations have significant influence on the vibration characteristics of plate elements. Numerous methods have been developed to quantify the effects of in-plane loads and deformations of individual plate elements with different boundary conditions based on their natural frequencies. However, these developments cannot be applied to the plate elements in a structural system as the natural frequency is a global parameter for the entire structure. This highlights the need for a method to quantify in-plane deformations of plate elements in structural framing systems. Motivated by this gap in knowledge, this research has developed a comprehensive vibration based procedure to quantify in-plane deformation of plate elements in a structural framing system. This procedure with its unique capabilities to capture the influence of load migration, boundary conditions and different tributary areas is presented herein and illustrated through examples.