102 resultados para Osteoporosis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary Generalized Procrustes analysis and thin plate splines were employed to create an average 3D shape template of the proximal femur that was warped to the size and shape of a single 2D radiographic image of a subject. Mean absolute depth errors are comparable with previous approaches utilising multiple 2D input projections. Introduction Several approaches have been adopted to derive volumetric density (g cm-3) from a conventional 2D representation of areal bone mineral density (BMD, g cm-2). Such approaches have generally aimed at deriving an average depth across the areal projection rather than creating a formal 3D shape of the bone. Methods Generalized Procrustes analysis and thin plate splines were employed to create an average 3D shape template of the proximal femur that was subsequently warped to suit the size and shape of a single 2D radiographic image of a subject. CT scans of excised human femora, 18 and 24 scanned at pixel resolutions of 1.08 mm and 0.674 mm, respectively, were equally split into training (created 3D shape template) and test cohorts. Results The mean absolute depth errors of 3.4 mm and 1.73 mm, respectively, for the two CT pixel sizes are comparable with previous approaches based upon multiple 2D input projections. Conclusions This technique has the potential to derive volumetric density from BMD and to facilitate 3D finite element analysis for prediction of the mechanical integrity of the proximal femur. It may further be applied to other anatomical bone sites such as the distal radius and lumbar spine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The measurement of broadband ultrasonic attenuation (BUA) in cancellous bone at the calcaneus was first described in 1984. The assessment of osteoporosis by BUA has recently been recognized by Universities UK, within its EurekaUK book, as being one of the “100 discoveries and developments in UK Universities that have changed the world” over the past 50 years, covering the whole academic spectrum from the arts and humanities to science and technology. Indeed, BUA technique has been clinically validated and is utilized worldwide, with at least seven commercial systems providing calcaneal BUA measurement. However, a fundamental understanding of the dependence of BUA upon the material and structural properties of cancellous bone is still lacking. This review aims to provide a science- and technology-orientated perspective on the application of BUA to the medical disease of osteoporosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Areal bone mineral density (aBMD) is the most common surrogate measurement for assessing the bone strength of the proximal femur associated with osteoporosis. Additional factors, however, contribute to the overall strength of the proximal femur, primarily the anatomical geometry. Finite element analysis (FEA) is an effective and widely used computerbased simulation technique for modeling mechanical loading of various engineering structures, providing predictions of displacement and induced stress distribution due to the applied load. FEA is therefore inherently dependent upon both density and anatomical geometry. FEA may be performed on both three-dimensional and two-dimensional models of the proximal femur derived from radiographic images, from which the mechanical stiffness may be redicted. It is examined whether the outcome measures of two-dimensional FEA, two-dimensional, finite element analysis of X-ray images (FEXI), and three-dimensional FEA computed stiffness of the proximal femur were more sensitive than aBMD to changes in trabecular bone density and femur geometry. It is assumed that if an outcome measure follows known trends with changes in density and geometric parameters, then an increased sensitivity will be indicative of an improved prediction of bone strength. All three outcome measures increased non-linearly with trabecular bone density, increased linearly with cortical shell thickness and neck width, decreased linearly with neck length, and were relatively insensitive to neck-shaft angle. For femoral head radius, aBMD was relatively insensitive, with two-dimensional FEXI and threedimensional FEA demonstrating a non-linear increase and decrease in sensitivity, respectively. For neck anteversion, aBMD decreased non-linearly, whereas both two-dimensional FEXI and three dimensional FEA demonstrated a parabolic-type relationship, with maximum stiffness achieved at an angle of approximately 15o. Multi-parameter analysis showed that all three outcome measures demonstrated their highest sensitivity to a change in cortical thickness. When changes in all input parameters were considered simultaneously, three and twodimensional FEA had statistically equal sensitivities (0.41±0.20 and 0.42±0.16 respectively, p = ns) that were significantly higher than the sensitivity of aBMD (0.24±0.07; p = 0.014 and 0.002 for three-dimensional and two-dimensional FEA respectively). This simulation study suggests that since mechanical integrity and FEA are inherently dependent upon anatomical geometry, FEXI stiffness, being derived from conventional two-dimensional radiographic images, may provide an improvement in the prediction of bone strength of the proximal femur than currently provided by aBMD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: 3.0 Tesla MRI offers the potential to quantify the volume fraction and structural texture of cancellous bone, along with quantification of marrow composition, in a single non-invasive examination. This study describes our preliminary investigations to identify parameters which describe cancellous bone structure including the relationships between texture and volume fraction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vertebrplasty involved injecting cement into a fractured vertebra to provide stabilisation. There is clinical evidence to suggest however that vertebroplasty may be assocated with a higher risk of adjacent vertebral fracture; which may be due to the change in material properties of the post-procedure vertebra modifying the transmission of mechanical stresses to adjacent vertebrae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The anti-estrogen treatment for hormone-sensitive breast cancer and the androgen deprivation therapy for prostate cancer can lead to the development of osteoporosis and bone fractures. Metastases associated with prostate and breast cancer can also occur in bone. Bisphosphonates are used in these types of bone dysfunction. Zoledronic acid is the most potent bisphosphonate. In osteoporosis, zoledronic acid inhibits bone reabsorption and increases bone mineral density for at least a year after intravenous administration. The efficacy and safety of zoledronic acid in osteoporosis secondary to hormone-sensitive cancers (prostate and breast), and in the bone metastases associated with these cancers are reviewed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Osteoporosis is a disease characterized by low bone mass and micro-architectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. Osteoporosis affects over 200 million people worldwide, with an estimated 1.5 million fractures annually in the United States alone, and with attendant costs exceeding $10 billion dollars per annum. Osteoporosis reduces bone density through a series of structural changes to the honeycomb-like trabecular bone structure (micro-structure). The reduced bone density, coupled with the microstructural changes, results in significant loss of bone strength and increased fracture risk. Vertebral compression fractures are the most common type of osteoporotic fracture and are associated with pain, increased thoracic curvature, reduced mobility, and difficulty with self care. Surgical interventions, such as kyphoplasty or vertebroplasty, are used to treat osteoporotic vertebral fractures by restoring vertebral stability and alleviating pain. These minimally invasive procedures involve injecting bone cement into the fractured vertebrae. The techniques are still relatively new and while initial results are promising, with the procedures relieving pain in 70-95% of cases, medium-term investigations are now indicating an increased risk of adjacent level fracture following the procedure. With the aging population, understanding and treatment of osteoporosis is an increasingly important public health issue in developed Western countries. The aim of this study was to investigate the biomechanics of spinal osteoporosis and osteoporotic vertebral compression fractures by developing multi-scale computational, Finite Element (FE) models of both healthy and osteoporotic vertebral bodies. The multi-scale approach included the overall vertebral body anatomy, as well as a detailed representation of the internal trabecular microstructure. This novel, multi-scale approach overcame limitations of previous investigations by allowing simultaneous investigation of the mechanics of the trabecular micro-structure as well as overall vertebral body mechanics. The models were used to simulate the progression of osteoporosis, the effect of different loading conditions on vertebral strength and stiffness, and the effects of vertebroplasty on vertebral and trabecular mechanics. The model development process began with the development of an individual trabecular strut model using 3D beam elements, which was used as the building block for lattice-type, structural trabecular bone models, which were in turn incorporated into the vertebral body models. At each stage of model development, model predictions were compared to analytical solutions and in-vitro data from existing literature. The incremental process provided confidence in the predictions of each model before incorporation into the overall vertebral body model. The trabecular bone model, vertebral body model and vertebroplasty models were validated against in-vitro data from a series of compression tests performed using human cadaveric vertebral bodies. Firstly, trabecular bone samples were acquired and morphological parameters for each sample were measured using high resolution micro-computed tomography (CT). Apparent mechanical properties for each sample were then determined using uni-axial compression tests. Bone tissue properties were inversely determined using voxel-based FE models based on the micro-CT data. Specimen specific trabecular bone models were developed and the predicted apparent stiffness and strength were compared to the experimentally measured apparent stiffness and strength of the corresponding specimen. Following the trabecular specimen tests, a series of 12 whole cadaveric vertebrae were then divided into treated and non-treated groups and vertebroplasty performed on the specimens of the treated group. The vertebrae in both groups underwent clinical-CT scanning and destructive uniaxial compression testing. Specimen specific FE vertebral body models were developed and the predicted mechanical response compared to the experimentally measured responses. The validation process demonstrated that the multi-scale FE models comprising a lattice network of beam elements were able to accurately capture the failure mechanics of trabecular bone; and a trabecular core represented with beam elements enclosed in a layer of shell elements to represent the cortical shell was able to adequately represent the failure mechanics of intact vertebral bodies with varying degrees of osteoporosis. Following model development and validation, the models were used to investigate the effects of progressive osteoporosis on vertebral body mechanics and trabecular bone mechanics. These simulations showed that overall failure of the osteoporotic vertebral body is initiated by failure of the trabecular core, and the failure mechanism of the trabeculae varies with the progression of osteoporosis; from tissue yield in healthy trabecular bone, to failure due to instability (buckling) in osteoporotic bone with its thinner trabecular struts. The mechanical response of the vertebral body under load is highly dependent on the ability of the endplates to deform to transmit the load to the underlying trabecular bone. The ability of the endplate to evenly transfer the load through the core diminishes with osteoporosis. Investigation into the effect of different loading conditions on the vertebral body found that, because the trabecular bone structural changes which occur in osteoporosis result in a structure that is highly aligned with the loading direction, the vertebral body is consequently less able to withstand non-uniform loading states such as occurs in forward flexion. Changes in vertebral body loading due to disc degeneration were simulated, but proved to have little effect on osteoporotic vertebra mechanics. Conversely, differences in vertebral body loading between simulated invivo (uniform endplate pressure) and in-vitro conditions (where the vertebral endplates are rigidly cemented) had a dramatic effect on the predicted vertebral mechanics. This investigation suggested that in-vitro loading using bone cement potting of both endplates has major limitations in its ability to represent vertebral body mechanics in-vivo. And lastly, FE investigation into the biomechanical effect of vertebroplasty was performed. The results of this investigation demonstrated that the effect of vertebroplasty on overall vertebra mechanics is strongly governed by the cement distribution achieved within the trabecular core. In agreement with a recent study, the models predicted that vertebroplasty cement distributions which do not form one continuous mass which contacts both endplates have little effect on vertebral body stiffness or strength. In summary, this work presents the development of a novel, multi-scale Finite Element model of the osteoporotic vertebral body, which provides a powerful new tool for investigating the mechanics of osteoporotic vertebral compression fractures at the trabecular bone micro-structural level, and at the vertebral body level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the important physiological role of periosteum in the pathogenesis and treatment of osteoporosis, little is known about the structural and cellular characteristics of periosteum in osteoporosis. To study the structural and cellular differences in both diaphyseal and metaphyseal periosteum of osteoporotic rats, samples from the right femur of osteoporotic and normal female Lewis rats were collected and tissue sections were stained with hematoxylin and eosin, antibodies or staining kit against tartrate resistant acid phosphatase (TRAP), alkaline phosphatase (ALP), vascular endothelial growth factor (VEGF), von Willebrand (vWF), tyrosine hydroxylase (TH) and calcitonin gene-related peptide (CGRP). The results showed that the osteoporotic rats had much thicker and more cellular cambial layer of metaphyseal periosteum compared with other periosteal areas and normal rats (P\0.001). The number of TRAP? osteoclasts in bone resorption pits, VEGF? cells and the degree of vascularization were found to be greater in the cambial layer of metaphyseal periosteum of osteoporotic rats (P\0.05), while no significant difference was detected in the number of ALP? cells between the two groups. Sympathetic nerve fibers identified by TH staining were predominantly located in the cambial layer of metaphyseal periosteum of osteoporotic rats. No obvious difference in the expression of CGRP between the two groups was found. In conclusion, periosteum may play an important role in the cortical bone resorption in osteoporotic rats and this pathological process may be regulated by the sympathetic nervous system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultraviolet radiation (UV) is the carcinogen that causes the most common malignancy in humans – skin cancer. However, moderate UV exposure is essential for producing vitaminDin our skin. VitaminDincreases the absorption of calcium from the diet, and adequate calcium is necessary for the building and maintenance of bones. Thus, low levels of vitamin D can cause osteomalacia and rickets and contribute to osteoporosis. Emerging evidence also suggests vitamin D may protect against falls, internal cancers, psychiatric conditions, autoimmune diseases and cardiovascular diseases. Since the dominant source of vitamin D is sunlight exposure, there is a need to understand what is a “balanced” level of sun exposure to maintain an adequate level of vitamin D but minimise the risks of eye damage, skin damage and skin cancer resulting from excessive UV exposure. There are many steps in the pathway from incoming solar UV to the eventual vitamin D status of humans (measured as 25-hydroxyvitamin D in the blood), and our knowledge about many of these steps is currently incomplete. This project begins by investigating the levels of UV available for synthesising vitamin D, and how these levels vary across seasons, latitudes and times of the day. The thesis then covers experiments conducted with an in vitro model, which was developed to study several aspects of vitamin D synthesis. Results from the model suggest the relationship between UV dose and vitamin D is not linear. This is an important input into public health messages regarding ‘safe’ UV exposure: larger doses of UV, beyond a certain limit, may not continue to produce vitamin D; however, they will increase the risk of skin cancers and eye damage. The model also showed that, when given identical doses of UV, the amount of vitamin D produced was impacted by temperature. In humans, a temperature-dependent reaction must occur in the top layers of human skin, prior to vitamin D entering the bloodstream. The hypothesis will be raised that cooler temperatures (occurring in winter and at high latitudes) may reduce vitamin D production in humans. Finally, the model has also been used to study the wavelengths of UV thought to be responsible for producing vitamin D. It appears that vitamin D production is limited to a small range of UV wavelengths, which may be narrower than previously thought. Together, these results suggest that further research is needed into the ability of humans to synthesise vitamin D from sunlight. In particular, more information is needed about the dose-response relationship in humans and to investigate the proposed impact of temperature. Having an accurate action spectrum will also be essential for measuring the available levels of vitamin D-effective UV. As this research continues, it will contribute to the scientific evidence-base needed for devising a public health message that will balance the risks of excessive UV exposure with maintaining adequate vitamin D.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Osteoporotic spinal fractures are a major concern in ageing Western societies. This study develops a multi-scale finite element (FE) model of the osteoporotic lumbar vertebral body to study the mechanics of vertebral compression fracture at both the apparent (whole vertebral body) and micro-structural (internal trabecular bone core)levels. Model predictions were verified against experimental data, and found to provide a reasonably good representation of the mechanics of the osteoporotic vertebral body. This novel modelling methodology will allow detailed investigation of how trabecular bone loss in osteoporosis affects vertebral stiffness and strength in the lumbar spine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although many different materials, techniques and methods, including artificial or engineered bone substitutes, have been used to repair various bone defects, the restoration of critical-sized bone defects caused by trauma, surgery or congenital malformation is still a great challenge to orthopedic surgeons. One important fact that has been neglected in the pursuit of resolutions for large bone defect healing is that most physiological bone defect healing needs the periosteum and stripping off the periosteum may result in non-union or non-healed bone defects. Periosteum plays very important roles not only in bone development but also in bone defect healing. The purpose of this project was to construct a functional periosteum in vitro using a single stem cell source and then test its ability to aid the repair of critical-sized bone defect in animal models. This project was designed with three separate but closely-linked parts which in the end led to four independent papers. The first part of this study investigated the structural and cellular features in periostea from diaphyseal and metaphyseal bone surfaces in rats of different ages or with osteoporosis. Histological and immunohistological methods were used in this part of the study. Results revealed that the structure and cell populations in periosteum are both age-related and site-specific. The diaphyseal periosteum showed age-related degeneration, whereas the metaphyseal periosteum is more destructive in older aged rats. The periosteum from osteoporotic bones differs from normal bones both in terms of structure and cell populations. This is especially evident in the cambial layer of the metaphyseal area. Bone resorption appears to be more active in the periosteum from osteoporotic bones, whereas bone formation activity is comparable between the osteoporotic and normal bone. The dysregulation of bone resorption and formation in the periosteum may also be the effect of the interaction between various neural pathways and the cell populations residing within it. One of the most important aspects in periosteum engineering is how to introduce new blood vessels into the engineered periosteum to help form vascularized bone tissues in bone defect areas. The second part of this study was designed to investigate the possibility of differentiating bone marrow stromal cells (BMSCs) into the endothelial cells and using them to construct vascularized periosteum. The endothelial cell differentiation of BMSCs was induced in pro-angiogenic media under both normoxia and CoCl2 (hypoxia-mimicking agent)-induced hypoxia conditions. The VEGF/PEDF expression pattern, endothelial cell specific marker expression, in vitro and in vivo vascularization ability of BMSCs cultured in different situations were assessed. Results revealed that BMSCs most likely cannot be differentiated into endothelial cells through the application of pro-angiogenic growth factors or by culturing under CoCl2-induced hypoxic conditions. However, they may be involved in angiogenesis as regulators under both normoxia and hypoxia conditions. Two major angiogenesis-related growth factors, VEGF (pro-angiogenic) and PEDF (anti-angiogenic) were found to have altered their expressions in accordance with the extracellular environment. BMSCs treated with the hypoxia-mimicking agent CoCl2 expressed more VEGF and less PEDF and enhanced the vascularization of subcutaneous implants in vivo. Based on the findings of the second part, the CoCl2 pre-treated BMSCs were used to construct periosteum, and the in vivo vascularization and osteogenesis of the constructed periosteum were assessed in the third part of this project. The findings of the third part revealed that BMSCs pre-treated with CoCl2 could enhance both ectopic and orthotopic osteogenesis of BMSCs-derived osteoblasts and vascularization at the early osteogenic stage, and the endothelial cells (HUVECs), which were used as positive control, were only capable of promoting osteogenesis after four-weeks. The subcutaneous area of the mouse is most likely inappropriate for assessing new bone formation on collagen scaffolds. This study demonstrated the potential application of CoCl2 pre-treated BMSCs in the tissue engineering not only for periosteum but also bone or other vascularized tissues. In summary, the structure and cell populations in periosteum are age-related, site-specific and closely linked with bone health status. BMSCs as a stem cell source for periosteum engineering are not endothelial cell progenitors but regulators, and CoCl2-treated BMSCs expressed more VEGF and less PEDF. These CoCl2-treated BMSCs enhanced both vascularization and osteogenesis in constructed periosteum transplanted in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Osteoporosis is the most common bone disease. Low levels of oestrogens or testosterone are risk factors for primary osteoporosis. The most common cause of secondary osteoporosis is glucocorticoid treatment, but there are many other secondary causes of osteoporosis. Osteoporosis can be secondary to anti-oestrogen treatment for hormone-sensitive breast cancer and to androgen-deprivation therapy for prostate cancer. Zoledronic is the most potent bisphosphonate at inhibiting bone resorption. In osteoporosis, zoledronic acid increases bone mineral density for at least a year after a single intravenous administration. The efficacy and safety of extended release (once-yearly) zoledronic acid in the treatment of osteoporosis is reviewed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary This systematic review demonstrates that vitamin D supplementation does not have a significant effect on muscle strength in vitamin D replete adults. However, a limited number of studies demonstrate an increase in proximal muscle strength in adults with vitamin D deficiency. Introduction The purpose of this study is to systematically review the evidence on the effect of vitamin D supplementation on muscle strength in adults. Methods A comprehensive systematic database search was performed. Inclusion criteria included randomised controlled trials (RCTs) involving adult human participants. All forms and doses of vitamin D supplementation with or without calcium supplementation were included compared with placebo or standard care. Outcome measures included evaluation of strength. Outcomes were compared by calculating standardised mean difference (SMD) and 95% confidence intervals. Results Of 52 identified studies, 17 RCTs involving 5,072 participants met the inclusion criteria. Meta-analysis showed no significant effect of vitamin D supplementation on grip strength (SMD −0.02, 95%CI −0.15,0.11) or proximal lower limb strength (SMD 0.1, 95%CI −0.01,0.22) in adults with 25(OH)D levels >25 nmol/L. Pooled data from two studies in vitamin D deficient participants (25(OH)D <25 nmol/L) demonstrated a large effect of vitamin D supplementation on hip muscle strength (SMD 3.52, 95%CI 2.18, 4.85). Conclusion Based on studies included in this systematic review, vitamin D supplementation does not have a significant effect on muscle strength in adults with baseline 25(OH)D >25 nmol/L. However, a limited number of studies demonstrate an increase in proximal muscle strength in adults with vitamin D deficiency. Keywords Muscle – Muscle fibre – Strength – Vitamin D